• Title/Summary/Keyword: harmonic function

Search Result 547, Processing Time 0.024 seconds

Optical and Mechanical Characteristics of NF System and NF Gap Control (근접장 광학계의 광학적 및 기계적 특성 분석과 근접장 간격제어)

  • Oh, Hyeong-Ryeol;Lee, Jun-Hee;Gweon, Dae-Gab;Kim, Soo-Kyung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1528-1532
    • /
    • 2000
  • The conventional optics and near field optics are compared numerically in the view points of the spot size and propagation characteristics. The decaying characteristics of near field light require the optics to access the object within several tens of nanometers. Therefore the gap control is one of the main issues in the near field optics area. In this paper the gap control is done by using the shear force of the NF(Near Field) probe and the characteristics are examined. The probe is modeled as a 2'nd order mass-spring-damper system driven by a harmonic force. The primary cause of the decrease in vibration amplitude is due to the damping force - shear force - between the surface and the probe. Using the model, damping constant and resonance frequency of the probe is calculated as a function of probe-sample distance. Detecting the amplitude and phase shift of the NF probe attached to the high Q-factor piezoelectric tuning fork, we can control the position of the NF probe about 0 to 50nm above the sample. The feedback signal to regulate the probe-sample distance can be used independently for surface topography imaging. 3-D view of the shear force image of a testing sample with the period of $1{\mu}m$ will be shown.

  • PDF

Space-vector PWM Techniques for a Two-Phase Permanent Magnet Synchronous Motor Considering a Reduction in Switching Losses

  • Lin, Hai;Zhao, Fei;Kwon, Byung-il
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.905-915
    • /
    • 2015
  • Two PWM techniques using space vector pulse-width modulation (SVPWM) are proposed for a two-phase permanent magnet synchronous motor (PMSM) driven by a two-phase eight-switch inverter. A two-phase motor with two symmetric stator windings is usually driven by a two-phase four-, six-, or eight-switch inverter. Compared with a four- and six-switch inverter, a two-phase eight-switch inverter can achieve larger power output. For two-phase motor drives, the SVPWM technique achieves more efficient DC bus voltage utilization and less harmonic distortion of the output voltage. For a two-phase PMSM fed by a two-phase eight-switch inverter under a normal SVPWM scheme, each of the eight PWM trigger signals for the inverter have to be changed twice in a cycle, causing a higher PWM frequency. Based on the normal SVPWM scheme, two effective SVPWM schemes are investigated in order to reduce the PWM frequency by rearranging four comparison values, while achieving the same function as the normal PWM scheme. A detailed explanation of the normal and two proposed SVPWM schemes is illustrated in the paper. The experimental results demonstrate that the proposed schemes achieve a better steady performance with lower switching losses compared with the normal scheme.

Evaluating High-Degree-and-Order Gravitational Harmonics and its Application to the State Predictions of a Lunar Orbiting Satellite

  • Song, Young-Joo;Kim, Bang-Yeop
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.247-256
    • /
    • 2015
  • In this work, an efficient method with which to evaluate the high-degree-and-order gravitational harmonics of the non-sphericity of a central body is described and applied to state predictions of a lunar orbiter. Unlike the work of Song et al. (2010), which used a conventional computation method to process gravitational harmonic coefficients, the current work adapted a well-known recursion formula that directly uses fully normalized associated Legendre functions to compute the acceleration due to the non-sphericity of the moon. With the formulated algorithms, the states of a lunar orbiting satellite are predicted and its performance is validated in comparisons with solutions obtained from STK/Astrogator. The predicted differences in the orbital states between STK/Astrogator and the current work all remain at a position of less than 1 m with velocity accuracy levels of less than 1 mm/s, even with different orbital inclinations. The effectiveness of the current algorithm, in terms of both the computation time and the degree of accuracy degradation, is also shown in comparisons with results obtained from earlier work. It is expected that the proposed algorithm can be used as a foundation for the development of an operational flight dynamics subsystem for future lunar exploration missions by Korea. It can also be used to analyze missions which require very close operations to the moon.

Active Noise Control in a Duct System Using the Hybrid Control Algorithm (하이브리드 제어 알고리즘을 이용한 덕트내 능동소음제어)

  • Lee, You-Yub;Park, Sang-Gil;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.288-293
    • /
    • 2009
  • This study presents the active noise control of duct noise. The duct was excited by a steady-state harmonic and white noise force and the control was performed by one control speaker attached to surface of the duct. An adaptive controller based on filtered x LMS(FXLMS) algorithm was used and controller was defined by minimizing the square of the response of the error microphone. The assemble controller, which is called a hybrid ANC(active noise control) system, was combined with feedforward and feedback controller. The feedforward ANC attenuates primary noise that is correlated with the reference signal, while the feedback ANC cancels the narrowband components of the primary noise that are not observed by the reference sensor. Furthermore, in many ANC applications, the periodic components of noise are the most intense and the feedback ANC system has the effect of reducing the spectral peaks of the primary noise, thus easing the burden of the feedforward ANC filter.

Runout Control of a Magnetically Suspended High Speed Spindle Using Adaptive Feedforward Method

  • Ro Seung-Kook;Kyung Jin-Ho;Park Jong-Kwon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.19-25
    • /
    • 2005
  • In this paper, the feedforward control with least mean square (LMS) adaptive algorithm is proposed and examined to reduce rotating error by runout of an active magnetic bearing system. Using eddy-current type gap sensors for control, the electrical runout caused by non-uniform material properties of sensor target produces rotational error amplified in feedback control loop, so this runout should be eliminated to increase rotating accuracy. The adaptive feedforward controller is designed and examined its tracking performances and stability numerically with established frequency response function. The designed feedforward controller was applied to a grinding spindle system which is manufactured with a 5.5 kW internal motor and 5-axis active magnetic bearing system including 5 eddy current gap sensors which have approximately 15∼30㎛ of electrical runout. According to the experimental results, the error signal in radial bearings is reduced to less than 5 ,Urn when it is rotating up to 50,000 rpm due to applying the feedforward control for first order harmonic frequency, and corresponding vibration of the spindle is also removed.

Experimental Verification of Spectral Element Analysis for the High-frequency Dynamic Responses of a Beam with a Surface Bonded Piezoelectric Transducer (압전소자가 부착된 보의 고주파수 동적응답에 대한 스펙트럼 요소 해석의 실험적 검증)

  • Kim, Eun-Jin;Sohn, Hoon;Park, Hyun-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.12
    • /
    • pp.1347-1355
    • /
    • 2009
  • This paper demonstrates the validity of spectral element analysis for modeling the high-frequency dynamic behaviors of a beam with a surface-bonded piezoelectric wafer through a laboratory test. In the spectral element analysis, the high-frequency electro-mechanical interaction can be considered properly with relatively low computational cost compared to the finite element analysis. In the verification test, a cantilever beam with a surface-bonded piezoelectric wafer is forced to be in steady-state motion by exerting the harmonic driving voltage signal on the piezoelectric wafer. A laser scanning vibrometer is used to obtain the overall dynamic responses of the structure such as resonance frequencies, the associated mode shapes, and frequency response functions up to 20 kHz. Then, these dynamic responses from the test are compared to those computed by the spectral element analysis. A two-dimensional finite analysis is conducted to obtain the asymptotic solutions for the comparison purpose as well.

Dynamic Characteristics of Tuned Liquid Column Dampers Using Shaking Table Test (진동대실험에 의한 동조액체기둥감쇠기의 동적특성)

  • Min, Kyung-Won;Park, Eun-Churn
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.6
    • /
    • pp.620-627
    • /
    • 2009
  • Shaking table test was carried out to obtain dynamic characteristics of TLCDs with uniform and non-uniform sections for both horizontal and vertical tubes. The input to the table is harmonic acceleration with constant magnitude. The output is horizontal dynamic force which is measured by load cell installed below the TLCD. Transfer functions are experimentally obtained using the ratio of input and output. Natural frequency, the most important design factor, is compared to that by theoretical equation for TLCDs with five different water levels. System identification process is performed for experimentally obtained transfer functions to find the dynamic characteristics of head loss coefficient and effective mass of TLCDs. It is found that their magnitudes are larger for a TLCD with non-uniform section than with uniform section and natural frequencies are close to theoretical ones.

A New Performance Function-Based Control Strategy for Hybrid Series Active Power Filter in Three-Phase Four-Wire Systems (3상 4선식 하이브리드 형 직렬 능동전력필터에 대한 새로운 성능함수 제어 이론)

  • 신재화;김진선;김영석
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.11
    • /
    • pp.563-571
    • /
    • 2003
  • In this paper, the control algorithm and control method for a combined system of shunt passive filter and series active filter in 3-phase 4-wire system are discussed. Moreover, the three-phase four-wire system is widely employed in distributing electric energy to several office building and manufacturing plants. In such systems, the third harmonic and its 3th harmonics are termed as triple and zero sequence components that do not cancel each other in the system neutral. Consequently, the triple harmonics add together creating a primary source of excessive neutral current. Regarding this concern, this paper presents a new control algorithm for a series hybrid active system, whereas the control approach it adopts may directly influence its compensation characteristics. Hence, the advantage of this control algorithm is direct extraction of compensation voltage reference and the required rating of the series active filter is much smaller than that of a conventional shunt active filter. Some experiments were executed and experimental results from a prototype active power filter confirm the suitability of the proposed approach.

On the Surge Motion of a Freely-Floating Sphere in a Plane Progressive Wave (규칙파(規則波)에 놓인 구(球)의 수평운동(水平運動)에 대(對)한 해석(解析))

  • Chan-Wook,Park;Hang-Shoon,Choi
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.18 no.1
    • /
    • pp.19-27
    • /
    • 1981
  • The surge motion of a freely-floating sphere in a regular wave is studied within the framework of a linear potential theory. The fluid is assumed to be perfect and only the steady-state harmonic motion in a water of infinite depth is considered. A velocity potential describing the fluid motion is decomposed into three parts; the incident wave potential, the diffraction potential and the radiation potential. In this paper the diffraction potential and the radiation potential are analysed by using multipole expansion method. Upon calculating pressures over the immersed surface of the sphere, the hydrodynamic forces are evaluated in terms of Froude-Krylov, diffraction, added mass and damping forces as functions of the frequency of the incident wave. Finally the frequency dependence of two pertinent parameters, the amplitude ratio and the phase lag between the motion of the sphere and that of the incident wave is derived from the equation of motion. As for numerical results the general tendency of the present calculation shows good agreement with Kim's work who also treated this problem utilizing the Green's function method.

  • PDF

A Study on the EMI Signal Analysis and Denoising Using a Wavelet Transform (웨이브렛 변환을 이용한 EMI 신호해석 및 잡음제거에 관한 연구)

  • 윤기방;박제헌;김기두
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.3
    • /
    • pp.37-45
    • /
    • 1998
  • In this paper, the different frequency component and time informations from an EMI signal are extracted simultaneously using a wavelet transform and the results of transform in the time and frequency domain are analyzed. Frequencies are extracted from the EMI signal by performing the multiresolution analysis using the Daubechies-4 filter coefficients and the time information through the results of wavelet transform. We have tried the correlation analysis to evaluate the results of wavelet transform. We have chosen the optimal wavelet function for an object signal by comparing the transformed results of various wavelet functions and verified the simulation examples of waveform and harmonic analysis using a wavelet transform. We have proved the denoising effect to the EMI signal using the soft thresholding technique.

  • PDF