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its Application to the State Predictions of a Lunar Orbiting Satellite 
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In this work, an efficient method with which to evaluate the high-degree-and-order gravitational harmonics of the non-
sphericity of a central body is described and applied to state predictions of a lunar orbiter. Unlike the work of Song et al. 
(2010), which used a conventional computation method to process gravitational harmonic coefficients, the current work 
adapted a well-known recursion formula that directly uses fully normalized associated Legendre functions to compute the 
acceleration due to the non-sphericity of the moon. With the formulated algorithms, the states of a lunar orbiting satellite 
are predicted and its performance is validated in comparisons with solutions obtained from STK/Astrogator. The predicted 
differences in the orbital states between STK/Astrogator and the current work all remain at a position of less than 1 m 
with velocity accuracy levels of less than 1 mm/s, even with different orbital inclinations. The effectiveness of the current 
algorithm, in terms of both the computation time and the degree of accuracy degradation, is also shown in comparisons 
with results obtained from earlier work. It is expected that the proposed algorithm can be used as a foundation for the 
development of an operational flight dynamics subsystem for future lunar exploration missions by Korea. It can also be 
used to analyze missions which require very close operations to the moon.

Keywords:	�high-degree-and-order spherical harmonics, fully normalized associated legendre function, lunar orbiter state 
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1. INTRODUCTION

It is well known that acceleration due to the non-

sphericity of a central body can give rise to significant 

perturbations of the orbit of a spacecraft, especially when 

it is flying at lower altitudes. Therefore, applications which 

require accurate flight dynamics may also require the 

inclusion of the non-spherical terms of a central body 

(Cappellari et al. 1976). The acceleration due to uniform 

the distribution of the mass of a central body with a 

simple geometry typically is simply formulated. However, 

if a central body has a non-spherical shape with a non-

symmetric mass, the acceleration can only expressed 

in terms of coefficients that are determined by satellite-

based gravity observations. An unevenly distributed mass 

of a central body is usually expressed by what are known 

as spherical harmonic coefficients, i.e., the degree and 

order of the central body potential. Spherical harmonic 

coefficients represent the global structure and irregularities 

of the potential field of the central body (the gravity field 

of the central body); by summing up the degree and order 

of a special type of harmonic expansion, the central body’s 

gravitational potential at any point above the surface can be 

derived (Barthelmes 2013). 

There exist many representations of the gravitational 

potential of a central body. Examples include spherical, 

spheroidal, ellipsoidal, the mass point or mass concentration, 

and finite element representations (Cunningham 1970). 

However, expressions based on spherical harmonic functions 

are very common (Fantino & Casotto 2009). When evaluating 
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the gravitational potential using spherical harmonic functions, 

one should compute the associated Legendre functions (ALFs) 

and recursively evaluate them for high-degree-and-order 

coefficients. Bettadpur et al. (1992) reported the importance 

of the selection of recursive formulas during the computation 

of ALFs for fast processing and numerical accuracy. Indeed, 

older models of spherical harmonic coefficients did not 

consider numerical problems, as they only contained several 

tens of degree-and-order harmonic coefficients. However, 

ultra-high resolution models are very common currently, 

not only in models of the earth but also in the lunar gravity 

field due to their importance in satellite-based applications. 

For example, the Earth Gravitational Model 1996 (EGM96) 

model contains 360 degree-and-order coefficients (Lemoine 

et al. 1998), and a recent model covers up to 2190 degrees and 

orders (Pavlis et al. 2005). For the lunar gravity field, Konopliv 

et al. (2001) developed a series of lunar gravity models from 

data collected by the Lunar Prospector (LP) spacecraft up to 

165 by 165 degrees and orders. Recently, a lunar gravity field 

model with 660 degrees and orders was announced using data 

provided from the Gravity Recovery and Interior Laboratory 

(GRAIL) mission (Konopliv et al. 2013). While processing such 

a high degree and order of spherical harmonic coefficients, 

several numerical considerations are crucial. First, the 

efficiency of the computing time to process ALFs recursively 

should be considered, as an undesirable procession time 

and/or a lack of storage may be encountered due to limits 

pertaining to numerical floating points. Second, numerical 

underflow and overflow with rounding errors can degrade the 

accuracy, which is another serious concern. Several extensive 

studies have been performed to optimize the performance 

when evaluating spherical harmonic coefficients. The most 

notable contributions were made by Holmes & Featherstone 

(2002a, b), who modified existing recursion algorithms while 

evaluating the partial sums of ALFs. 

The Korean space program has plans to launch a lunar 

orbiter and lander around 2020 and also has plans to explore 

Mars, asteroids, and deep space in the future. Therefore, 

the Korean aeronautical and space science community 

has performed numerous related mission studies. Several 

preliminary design studies have already been conducted, 

such as an transfer trajectory analysis (Song et al. 2009, 

2011; Woo et al. 2010), contact schedule analysis (Song et al. 

2013, 2014), rover system design (Kim et al. 2009, Eom et al. 

2012). 

As the future lunar mission of Korea is one of the current 

interests among the Korean astronautical society, this paper 

focuses on the processing of a high-degree-and order lunar 

gravity field model. However, it is important to note that the 

current algorithm can be applied to any planet which has a 

non-spherical body shape. Applying the lunar gravity field 

model to the flight dynamics of a lunar orbiting satellite 

was initially done by Song et al. (2010) in Korea. They 

developed a precise lunar orbit propagator and analyzed the 

characteristics of the orbital decay time of a spacecraft flying 

near the moon. In their simulation, the LP165 gravity field 

model was used to compute the acceleration due to the non-

sphericity of the moon. However, as no significant changes 

in the decay time were observed, even with more harmonic 

coefficients. Moreover, Song et al. (2010) did not consider 

degrees and orders over 50 by 50. In the work of Song et al. 

(2010), ALFs were processed with a conventional computing 

method, though such a low degree and order may not cause 

serious numerical problems. Nevertheless, using a lunar 

gravity field with higher degree-and-order characteristics 

with recently announced models is necessary for high-

precision work. 

Therefore, this work attempts to improve the performance 

of the earlier lunar orbit propagator developed by Song 

et al. (2010) and furthermore to apply it to Korea’s lunar 

flight dynamics subsystem (FDS), which is currently under 

development. An algorithm with proven efficiency when 

used to evaluate high-order gravitational harmonics (Holmes 

& Featherstone 2002a, b) is utilized in conjunction with 

an existing lunar orbit propagator (Song et al. 2010). The 

performance of the implemented algorithm is verified in 

comparisons of orbit prediction solutions obtained from 

STK/Astrogator. STK/Astrogator is the commercial software 

developed by Analytical Graphics, Inc. (AGI) in cooperation 

with the NASA Goddard Space Flight Center (GSFC) Flight 

Dynamics Analysis Branch (FDAB). STK/Astrogator was 

already used and verified its’ performance while analyzing 

and planning various past planetar y missions. The 

achieved performance enhancement, in terms of both the 

computation time and the degree of accuracy degradation 

when using the current algorithm, are also analyzed in 

detail. In Section 2, the theory used to implement the current 

algorithm is discussed, with detailed algorithm flows. 

Simulation results including a performance validation with 

STK/Astrogator, the achieved performance enhancement 

in terms of both the computation time and the degree 

of accuracy degradation are shown in Section 3. Finally, 

conclusions are given in Section 4. As the performance of 

the implemented algorithm is firmly validated, it can thus 

be used as a basis for developing an operational FDS for 

the future lunar exploration mission of Korea. It can also be 

used to analyze various missions that require precise flight 

dynamics in their operation in very close proximity to the 

moon.
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2. PERTURBING ACCELERATIONS DUE TO NON-
SPHERICITY 

The conventional perturbing accelerations acting on a 

spacecraft at an external point P due to a non-spherical 

shape of a central body, the moon in this study, can be 

described by the aspherical-potential function V, as in Eq. 

(1) (Vallado 2013),
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where r  is the distance to a spacecraft from the center of the moon,   and   are the latitude and 

the longitude of a spacecraft with respect to the Moon-centered Moon mean equator and prime 

meridian (M-MMEPM) frame, G  is the universal gravitational constant of the moon, M is the 

moon mass, MR  is the moon’s equatorial radius, and nmP  denotes the Legendre polynomials with 

degree n  and order m  computed from the recursion relationship. Finally, ,Snm nmC  denotes the 

non-normalized harmonic coefficients. The geometry of the described potential function is shown in 

Fig. 1. 

 

 
 

Fig. 1. The geometry of the described potential function (not to scale) 
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While processing the given harmonic coefficients using an older gravity field model with Eq. (1), 

numerical problems may not be serious, as these models were provided in non-normalized values with 

relatively low-degree-and-order harmonic coefficients. However, most current harmonic coefficients 

are released with normalized values with having higher degree-and-order terms. For satellite 

applications which do not require very precise accuracy levels, evaluating harmonic coefficients with 

Eq. (1) remains valid. To use normalized degree-and-order harmonic coefficients with a conventional 

computation method, the relationships between the non-normalized and the normalized coefficients 

shown in Eq. (3) should be utilized (Vallado 2013). 
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Here, 1k   if 0m  , and 2k   if 0m  . Also, upper bars denote that values are all fully 

normalized. However, in Eq. (3), it is clear that for large values of n  and m , harmonic coefficients 

will experience overflow while Legendre polynomials show underflow, even with double the 

precision accuracy. Clearly this will not only degrade the computation accuracy but will also require 

more computational time. Thus, if fully normalized harmonic coefficients are considered, nmP  

should also be fully normalized, i.e., nmP  , as expressed by Eq. (4). 

0 0
( , , ) cos sin (sin )

nn
M

nm nm nm
n m

RGMV r C m S m P
r r



 

             
       (4) 

� (2c)

	

5 

 

sinz r                                  (2c) 

2 2 2 2r x y z                                (2d) 

2 2 2
sin z z

r x y z
  

 
                        (2e) 

tan y
x

                                    (2f) 

 

While processing the given harmonic coefficients using an older gravity field model with Eq. (1), 

numerical problems may not be serious, as these models were provided in non-normalized values with 

relatively low-degree-and-order harmonic coefficients. However, most current harmonic coefficients 

are released with normalized values with having higher degree-and-order terms. For satellite 

applications which do not require very precise accuracy levels, evaluating harmonic coefficients with 

Eq. (1) remains valid. To use normalized degree-and-order harmonic coefficients with a conventional 

computation method, the relationships between the non-normalized and the normalized coefficients 

shown in Eq. (3) should be utilized (Vallado 2013). 

  

( )!
( )! (2 1)nm nm

n mC C
n m k n




 
                        (3a) 

( )!
( )! (2 1)nm nm

n mS S
n m k n




 
                        (3b) 

( )!
( )! (2 1)

nm
nm

PP
n m

n m k n




 

                          (3c) 

 

Here, 1k   if 0m  , and 2k   if 0m  . Also, upper bars denote that values are all fully 

normalized. However, in Eq. (3), it is clear that for large values of n  and m , harmonic coefficients 

will experience overflow while Legendre polynomials show underflow, even with double the 

precision accuracy. Clearly this will not only degrade the computation accuracy but will also require 

more computational time. Thus, if fully normalized harmonic coefficients are considered, nmP  

should also be fully normalized, i.e., nmP  , as expressed by Eq. (4). 

0 0
( , , ) cos sin (sin )

nn
M

nm nm nm
n m

RGMV r C m S m P
r r



 

             
       (4) 

� (2d)

	

5 

 

sinz r                                  (2c) 

2 2 2 2r x y z                                (2d) 

2 2 2
sin z z

r x y z
  

 
                        (2e) 

tan y
x

                                    (2f) 

 

While processing the given harmonic coefficients using an older gravity field model with Eq. (1), 

numerical problems may not be serious, as these models were provided in non-normalized values with 

relatively low-degree-and-order harmonic coefficients. However, most current harmonic coefficients 

are released with normalized values with having higher degree-and-order terms. For satellite 

applications which do not require very precise accuracy levels, evaluating harmonic coefficients with 

Eq. (1) remains valid. To use normalized degree-and-order harmonic coefficients with a conventional 

computation method, the relationships between the non-normalized and the normalized coefficients 

shown in Eq. (3) should be utilized (Vallado 2013). 

  

( )!
( )! (2 1)nm nm

n mC C
n m k n




 
                        (3a) 

( )!
( )! (2 1)nm nm

n mS S
n m k n




 
                        (3b) 

( )!
( )! (2 1)

nm
nm

PP
n m

n m k n




 

                          (3c) 

 

Here, 1k   if 0m  , and 2k   if 0m  . Also, upper bars denote that values are all fully 

normalized. However, in Eq. (3), it is clear that for large values of n  and m , harmonic coefficients 

will experience overflow while Legendre polynomials show underflow, even with double the 

precision accuracy. Clearly this will not only degrade the computation accuracy but will also require 

more computational time. Thus, if fully normalized harmonic coefficients are considered, nmP  

should also be fully normalized, i.e., nmP  , as expressed by Eq. (4). 

0 0
( , , ) cos sin (sin )

nn
M

nm nm nm
n m

RGMV r C m S m P
r r



 

             
       (4) 

� (2e)

	

5 

 

sinz r                                  (2c) 

2 2 2 2r x y z                                (2d) 

2 2 2
sin z z

r x y z
  

 
                        (2e) 

tan y
x

                                    (2f) 

 

While processing the given harmonic coefficients using an older gravity field model with Eq. (1), 

numerical problems may not be serious, as these models were provided in non-normalized values with 

relatively low-degree-and-order harmonic coefficients. However, most current harmonic coefficients 

are released with normalized values with having higher degree-and-order terms. For satellite 

applications which do not require very precise accuracy levels, evaluating harmonic coefficients with 

Eq. (1) remains valid. To use normalized degree-and-order harmonic coefficients with a conventional 

computation method, the relationships between the non-normalized and the normalized coefficients 

shown in Eq. (3) should be utilized (Vallado 2013). 

  

( )!
( )! (2 1)nm nm

n mC C
n m k n




 
                        (3a) 

( )!
( )! (2 1)nm nm

n mS S
n m k n




 
                        (3b) 

( )!
( )! (2 1)

nm
nm

PP
n m

n m k n




 

                          (3c) 

 

Here, 1k   if 0m  , and 2k   if 0m  . Also, upper bars denote that values are all fully 

normalized. However, in Eq. (3), it is clear that for large values of n  and m , harmonic coefficients 

will experience overflow while Legendre polynomials show underflow, even with double the 

precision accuracy. Clearly this will not only degrade the computation accuracy but will also require 

more computational time. Thus, if fully normalized harmonic coefficients are considered, nmP  

should also be fully normalized, i.e., nmP  , as expressed by Eq. (4). 

0 0
( , , ) cos sin (sin )

nn
M

nm nm nm
n m

RGMV r C m S m P
r r



 

             
       (4) 

� (2f)

While processing the given harmonic coefficients 

using an older gravity field model with Eq. (1), numerical 

problems may not be serious, as these models were 

provided in non-normalized values with relatively low-

degree-and-order harmonic coefficients. However, most 

current harmonic coefficients are released with normalized 

values with having higher degree-and-order terms. For 

satellite applications which do not require very precise 

accuracy levels, evaluating harmonic coefficients with Eq. 

(1) remains valid. To use normalized degree-and-order 

harmonic coefficients with a conventional computation 

method, the relationships between the non-normalized 

and the normalized coefficients shown in Eq. (3) should be 

utilized (Vallado 2013).

 

	

5 

 

sinz r                                  (2c) 

2 2 2 2r x y z                                (2d) 

2 2 2
sin z z

r x y z
  

 
                        (2e) 

tan y
x

                                    (2f) 

 

While processing the given harmonic coefficients using an older gravity field model with Eq. (1), 

numerical problems may not be serious, as these models were provided in non-normalized values with 

relatively low-degree-and-order harmonic coefficients. However, most current harmonic coefficients 

are released with normalized values with having higher degree-and-order terms. For satellite 

applications which do not require very precise accuracy levels, evaluating harmonic coefficients with 

Eq. (1) remains valid. To use normalized degree-and-order harmonic coefficients with a conventional 

computation method, the relationships between the non-normalized and the normalized coefficients 

shown in Eq. (3) should be utilized (Vallado 2013). 

  

( )!
( )! (2 1)nm nm

n mC C
n m k n




 
                        (3a) 

( )!
( )! (2 1)nm nm

n mS S
n m k n




 
                        (3b) 

( )!
( )! (2 1)

nm
nm

PP
n m

n m k n




 

                          (3c) 

 

Here, 1k   if 0m  , and 2k   if 0m  . Also, upper bars denote that values are all fully 

normalized. However, in Eq. (3), it is clear that for large values of n  and m , harmonic coefficients 

will experience overflow while Legendre polynomials show underflow, even with double the 

precision accuracy. Clearly this will not only degrade the computation accuracy but will also require 

more computational time. Thus, if fully normalized harmonic coefficients are considered, nmP  

should also be fully normalized, i.e., nmP  , as expressed by Eq. (4). 

0 0
( , , ) cos sin (sin )

nn
M

nm nm nm
n m

RGMV r C m S m P
r r



 

             
       (4) 

� (3a)

	

5 

 

sinz r                                  (2c) 

2 2 2 2r x y z                                (2d) 

2 2 2
sin z z

r x y z
  

 
                        (2e) 

tan y
x

                                    (2f) 

 

While processing the given harmonic coefficients using an older gravity field model with Eq. (1), 

numerical problems may not be serious, as these models were provided in non-normalized values with 

relatively low-degree-and-order harmonic coefficients. However, most current harmonic coefficients 

are released with normalized values with having higher degree-and-order terms. For satellite 

applications which do not require very precise accuracy levels, evaluating harmonic coefficients with 

Eq. (1) remains valid. To use normalized degree-and-order harmonic coefficients with a conventional 

computation method, the relationships between the non-normalized and the normalized coefficients 

shown in Eq. (3) should be utilized (Vallado 2013). 

  

( )!
( )! (2 1)nm nm

n mC C
n m k n




 
                        (3a) 

( )!
( )! (2 1)nm nm

n mS S
n m k n




 
                        (3b) 

( )!
( )! (2 1)

nm
nm

PP
n m

n m k n




 

                          (3c) 

 

Here, 1k   if 0m  , and 2k   if 0m  . Also, upper bars denote that values are all fully 

normalized. However, in Eq. (3), it is clear that for large values of n  and m , harmonic coefficients 

will experience overflow while Legendre polynomials show underflow, even with double the 

precision accuracy. Clearly this will not only degrade the computation accuracy but will also require 

more computational time. Thus, if fully normalized harmonic coefficients are considered, nmP  

should also be fully normalized, i.e., nmP  , as expressed by Eq. (4). 

0 0
( , , ) cos sin (sin )

nn
M

nm nm nm
n m

RGMV r C m S m P
r r



 

             
       (4) 

� (3b)

	

5 

 

sinz r                                  (2c) 

2 2 2 2r x y z                                (2d) 

2 2 2
sin z z

r x y z
  

 
                        (2e) 

tan y
x

                                    (2f) 

 

While processing the given harmonic coefficients using an older gravity field model with Eq. (1), 

numerical problems may not be serious, as these models were provided in non-normalized values with 

relatively low-degree-and-order harmonic coefficients. However, most current harmonic coefficients 

are released with normalized values with having higher degree-and-order terms. For satellite 

applications which do not require very precise accuracy levels, evaluating harmonic coefficients with 

Eq. (1) remains valid. To use normalized degree-and-order harmonic coefficients with a conventional 

computation method, the relationships between the non-normalized and the normalized coefficients 

shown in Eq. (3) should be utilized (Vallado 2013). 

  

( )!
( )! (2 1)nm nm

n mC C
n m k n




 
                        (3a) 

( )!
( )! (2 1)nm nm

n mS S
n m k n




 
                        (3b) 

( )!
( )! (2 1)

nm
nm

PP
n m

n m k n




 

                          (3c) 

 

Here, 1k   if 0m  , and 2k   if 0m  . Also, upper bars denote that values are all fully 

normalized. However, in Eq. (3), it is clear that for large values of n  and m , harmonic coefficients 

will experience overflow while Legendre polynomials show underflow, even with double the 

precision accuracy. Clearly this will not only degrade the computation accuracy but will also require 

more computational time. Thus, if fully normalized harmonic coefficients are considered, nmP  

should also be fully normalized, i.e., nmP  , as expressed by Eq. (4). 

0 0
( , , ) cos sin (sin )

nn
M

nm nm nm
n m

RGMV r C m S m P
r r



 

             
       (4) 

� (3c)

Here, k=1 if m=0, and k=2 if m≠0. Also, upper bars denote 

that values are all fully normalized. However, in Eq. (3), it is 

clear that for large values of n and m, harmonic coefficients 

will experience overflow while Legendre polynomials show 

underflow, even with double the precision accuracy. Clearly 

this will not only degrade the computation accuracy but 

will also require more computational time. Thus, if fully 

normalized harmonic coefficients are considered, P
nm

 should 

also be fully normalized, i.e., 
nm

, as expressed by Eq. (4).

5 

 

sinz r                                  (2c) 

2 2 2 2r x y z                                (2d) 

2 2 2
sin z z

r x y z
  

 
                        (2e) 

tan y
x

                                    (2f) 

 

While processing the given harmonic coefficients using an older gravity field model with Eq. (1), 

numerical problems may not be serious, as these models were provided in non-normalized values with 

relatively low-degree-and-order harmonic coefficients. However, most current harmonic coefficients 

are released with normalized values with having higher degree-and-order terms. For satellite 

applications which do not require very precise accuracy levels, evaluating harmonic coefficients with 

Eq. (1) remains valid. To use normalized degree-and-order harmonic coefficients with a conventional 

computation method, the relationships between the non-normalized and the normalized coefficients 

shown in Eq. (3) should be utilized (Vallado 2013). 

  

( )!
( )! (2 1)nm nm

n mC C
n m k n




 
                        (3a) 

( )!
( )! (2 1)nm nm

n mS S
n m k n




 
                        (3b) 

( )!
( )! (2 1)

nm
nm

PP
n m

n m k n




 

                          (3c) 

 

Here, 1k   if 0m  , and 2k   if 0m  . Also, upper bars denote that values are all fully 

normalized. However, in Eq. (3), it is clear that for large values of n  and m , harmonic coefficients 

will experience overflow while Legendre polynomials show underflow, even with double the 

precision accuracy. Clearly this will not only degrade the computation accuracy but will also require 

more computational time. Thus, if fully normalized harmonic coefficients are considered, nmP  

should also be fully normalized, i.e., nmP  , as expressed by Eq. (4). 

0 0
( , , ) cos sin (sin )

nn
M

nm nm nm
n m

RGMV r C m S m P
r r



 

             
       (4) �(4)

The non-sectorial portion of fully normalized associated 

Legendre functions (fnALFs), P̄
nm

, can be computed as 

follows (Colombo 1981)

	

6 

 

 

The non-sectorial portion of fully normalized associated Legendre functions (fnALFs), nmP , can be 

computed as follows (Colombo, 1981): 

 

1, 2,( ) ( ) ( ),nm nm n m nm n mP a tP b P n m                         (5) 

The other terms in Eq. (5) are defined as shown below. 

cost                                  (6a) 

(2 1)(2 1)
( )( )nm

n na
n m n m
 


 

                          (6b) 

(2 1)( 1)( 1)
( )( )(2 3)nm

n n m n mb
n m n m n
    


  

                     (6c) 

For the sectorial portion of the fnALFs, ( )mmP  , (i.e., n m ), the recursion can be expressed 

by Eq. (7) (Colombo, 1981); these are computed using the initial values of 0,0 ( ) 1P    and 

1,1( ) 3P u  , where sinu   . 

 

1, 1
2 1( ) ( ), 1

2mm m m
mP u P m

m  


                          (7) 

 

With nmP , the recursion formulas for trigonometric functions may also combined while evaluating 
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The other terms in Eq. (5) are defined as shown below.Fig. 1.  The geometry of the described potential function (not to scale).
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For the sectorial portion of the fnALFs, ( )mmP  , (i.e., n m ), the recursion can be expressed 

by Eq. (7) (Colombo, 1981); these are computed using the initial values of 0,0 ( ) 1P    and 

1,1( ) 3P u  , where sinu   . 
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With nmP , the recursion formulas for trigonometric functions may also combined while evaluating 

cosm  and sin m , as in Eq. (8) (Fantino & Casotto 2009). 
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Unlike the conventional computation method described in Eq. (4), an aspherical-potential function 

can be rewritten with defined with “lumped coefficients,” as in Eq. (9) (Holmes & Featherstone 2002a, 

b; Fantino & Casotto 2009).  
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In this equation, the defined “lumped coefficients” A
m
(0)

 

and B
m
(0) are given as follows (Fantino & Casotto 2009):
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In Eqs. (9) and (10), M  is the maximum finite degree of the spherical harmonic expansion. Here, 

one interesting fact is that the partial sums of fnALFs are computed in reverse order (expressed by 

Eqs. (9) and (10)) in the form of modifications of existing recursion algorithms (Holmes & 

Featherstone 2002a, b). Therefore, the loop starts by increasing the harmonic coefficient m , after 

which all dependent orders of the harmonic coefficient of n  are evaluated. To evaluate the inner 

sums, Eq. (7) is used to start the polynomial recursion when m n ; for others, Eq. (5) is used up to 

n M . As discussed earlier, there are several recurrence relationships in the evaluations of the 

fnALPs; however, the forward column method is proven to be fast and reliable (Fantino & Casotto 

2009) and is therefore used in this work. For more details on the implementation of the forward 

column recursion process, readers are referred to works done by Holmes & Featherstone (2002a, b). 

 

To determine the acceleration due to the non-sphericity of a central body expressed in body-fixed 

Cartesian coordinates, [ , , ]
b b b

T
b x y za a aa , the transformation from spherical to Cartesian 

coordinates with partial derivatives connecting them can be derived by Eq. (2) below.  
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fact is that the partial sums of fnALFs are computed in 

reverse order (expressed by Eqs. (9) and (10)) in the form 

of modifications of existing recursion algorithms (Holmes 

& Featherstone 2002a, b). Therefore, the loop starts by 

increasing the harmonic coefficient m, after which all 

dependent orders of the harmonic coefficient of n are 

evaluated. To evaluate the inner sums, Eq. (7) is used to 

start the polynomial recursion when m =n ; for others, Eq. 

(5) is used up to n =M. As discussed earlier, there are several 

recurrence relationships in the evaluations of the fnALPs; 

however, the forward column method is proven to be fast 

and reliable (Fantino & Casotto 2009) and is therefore used 

in this work. For more details on the implementation of the 

forward column recursion process, readers are referred to 

works done by Holmes & Featherstone (2002a, b).

To determine the acceleration due to the non-sphericity 

of a central body expressed in body-fixed Cartesian 

coordinates, a
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]T,  the transformation from 

spherical to Cartesian coordinates with partial derivatives 

connecting them can be derived by Eq. (2) below. 
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In addition, the partial derivatives of the non-spherical portion of the potential with respect to ,r   

and   can be derived as shown below (Fantino & Casotto 2009): 
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The lumped coefficients for the first-order partial derivatives of the potential are also determined 
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In addition, the partial derivatives of the non-spherical 

portion of the potential with respect to r, φ and λ can be 

derived as shown below (Fantino & Casotto 2009):
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xb
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 become 

components of the accelerations due to the non-sphericity 

of the central body expressed in a body-fixed frame. 

However, note that the perturbing forces due to non-

spherical harmonics are transformed into the inertial frame, 

the Moon-centered moon mean equator at the epoch 

J2000 (M-MME2000) frame in this study, to integrate the 

equations of motion numerically. The described evaluation 

procedure overall is depicted in Fig. 2. 

3. RESULTS ANALYSIS

3.1 Simulation Setup

As this work mainly concerns the effect of perturbing 

Fig. 2.  Overall system flows for evaluating the accelerations due to the non-sphericity of the moon.
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acceleration due to the non-spherical shape of the moon, 

the effects of other perturbing forces, such as third-body 

and solar radiation pressures acting on a spacecraft, are 

excluded from the simulation. Among the various spherical 

harmonic expansions of the lunar gravity field, the LP165P 

model, which provides 165 degrees and orders, is used in 

this study. JPL DE405 is used for an accurate determination 

of the planets’ ephemeris and for all planetary constants 

(Standish 1998). For numerical integration, the Runge-

Kutta-Fehlberg 7-8th order variable step size integrator is 

used with a truncation error tolerance of ε = 1×10-13. Also, to 

convert coordinate systems between the M-MME2000 and 

M-MMEPM frames, the lunar orientation specified by JPL 

DE405 is used for high-precision work. A leap second time 

of thirty-three seconds is used to compute the difference 

between the ephemeris time and the coordinated universal 

time (UTC). Each simulation is done with an Intel® Core 

i5 CPU, 8GB RAM, and with the Windows 8.1 Professional 

operating system with executable files generated from 

Compaq Visual Fortran. The initial epoch is assumed to 

be Jan-01-2018 00:00:00 (UTC) corresponding to Korea’s 

first experimental lunar orbiter mission, which is currently 

planned to be launched near around 2017~2018. 

3.2 Orbit Prediction Accuracy Validation 

With the evaluated algorithm to compute the acceleration 

due to the non-sphericity of the moon, a fictitious spacecraft 

orbiting the moon is assumed and the orbit prediction 

performance is validated in comparisons with solutions 

obtained from STK/Astrogator. For a fictitious lunar orbiter, 

it is assumed that the orbiter is orbiting the moon with 

a circular orbit at an altitude of 100 km. Therefore, the 

initial orbital elements in the M-MME2000 frame are given 

as follows: a semi-major axis of about 1,838.2 km, zero 

eccentricity, right ascension of the ascending node of 0 deg 

and finally an argument of latitude of 0 deg. To consider 

various lunar surfaces that show different attractions, posi-

grade, retro-grade and a polar orbit around the moon are 

selected while assuming the six different orbital inclinations 

of 0, 30, 60, 90, 120 and 150 degs. The orbit propagation 

duration is set to seven days in earth time, as a conventional 

lunar orbiter mission determines its orbit one to three times 

per week (Mackenzie et al. 2004; Ikeda et al. 2009). In Fig. 3, 

the corresponding lunar ground tracks are shown for six 

different orbital inclinations. It is readily apparent in Fig. 

3 that wide ranges of lunar surfaces are covered with the 

different selected inclinations.

As a performance validation, orbit prediction results 

between STK/Astrogator and the current simulation were 

compared, as shown in Table 1. To compare the results, 

simulations are performed with a full degree and order (165 

by 165) of harmonic coefficients. Also, the performances are 

validated by a direct comparison of the final states in the 

M-MME2000 frame after seven days of propagation. Final 

state comparisons in the inertial frame are a routine method 

when validating a developed FDS for use during the actual 

operation of any given spacecraft. Also, it is important 

to note that the states obtained from STK/Astrogator are 

assumed to be reference values; the results obtained from 

the current simulation are subtracted from these reference 

values to derive every absolute magnitude of the delta states 

(|Δr
x
|, |Δr

y
|, |Δr

z
|, |Δr |, |ΔV

x
|, |ΔV

y
|, |ΔV

z
| and |ΔV |) shown in 

Table 1.

As shown in Table 1, the maximum state differences 
Fig. 3. Lunar ground tracks for the six different inclined test orbits selected.

Table 1. Performance validation results for circular lunar mapping orbits at an altitude of 100 km with six different inclinations.
Inclination 

(deg)
|Δrx|
(cm)

|Δry|
(cm)

|Δrz|
(cm)

|Δr |
(cm)

|ΔVx|
(cm/s)

|ΔVy|
(cm/s)

|ΔVz|
(cm/s)

|ΔV |
(cm/s)

0 12.901 40.278 0.381 42.295 0.037 0.012 0.001 0.040
30 25.356 63.947 45.233 82.330 0.081 0.010 0.011 0.082
60 0.399 0.793 1.349 1.615 0.001 0.000 0.000 0.001
90 7.223 0.606 44.269 44.858 0.021 0.027 0.052 0.062

120 18.231 42.753 69.654 83.737 0.079 0.004 0.015 0.081
150 16.971 52.292 27.882 61.643 0.054 0.011 0.01 0.056



253 http://janss.kr 

YJ Song & BY Kim    Lunar Orbiter State Predictions under Spherical Harmonics

between STK/Astrogator and the current simulation at the 

final time of the prediction were found to be approximately 

83.74 cm in terms of the position and 0.82 mm/s for 

the velocity. Therefore, it can be concluded that every 

prediction result is in good agreement with the results 

obtained using STK/Astrogator, within 1 m or less for the 

position and 1 mm/s for the velocity accuracy. As the 

results from STK/Astrogator are assumed to be the true 

values, the authors believe that these performance levels 

are sufficiently accurate. In fact, Lunar Operational Orbit 

Determination Program (ILOODP) of the Indian Space 

Research Organization (ISRO) was validated with LP 

mission ephemeris obtained from NASA’s Goddard Space 

Flight Center (GSFC). These results were approximately 

25 m and 4 cm/sec for the accuracy of the position and 

velocity, respectively, for a one-day prediction during 

the lunar mapping (LM) phase (Vighnesam et al. 2006). 

The results also indicate that the evaluated algorithm is 

well implemented, confirming that it can be applied to an 

operational FDS for the upcoming lunar exploration mission 

of Korea, especially for the phase where the spacecraft is 

flying in very close proximity to the moon. In addition to 

these results, the computation times for each of the different 

inclined cases are compared in Table 2. Despite the different 

inclinations, every simulation was completed within 5.33 

min to process the given full-degree-and-order (165 by 

165) gravitational harmonics, showing a mean processing 

time of nearly 4.36 min, which is relatively acceptable in 

an actual operational sense. A more detailed analysis of 

the processing time with respect to different degrees and 

orders of the spherical harmonics will be considered in the 

following subsection. 

3.3 Processing Time and Accuracy Comparisons

In this subsection, the required computing time and the 

resulting accuracy levels with respect to different degrees 

and orders of the harmonic coefficients are analyzed. In 

the following discussions, Method A is the result with 

the conventional computation method for evaluating 

perturbing accelerations due to spherical harmonics as 

adapted in Song et al. (2010). Method B is the current 

simulation result which utilized the forward column method 

with fnALFs. For a comparison of the computation times 

and resulting accuracy levels, the orbital inclinations of a 

fictitious lunar orbiter are fixed at 90 deg, with a polar orbit, 

and only up to 90 degrees and 90 orders of lunar spherical 

harmonics are compared. The main reason for limiting the 

degree and order levels to 90 by 90 is that the computation 

time with Method A required more than the actual time (i.e., 

it required more than a week to simulate seven days of orbit 

predictions), if more than 90 by 90 harmonic coefficients are 

applied. The required computation time between Methods 

A and B are compared, and the corresponding results are 

shown in Table 3. As expected, the overall computing time 

simulated with Method A required more time than Method 

B. However, the time differences are virtually negligible, at 

less than 4 sec, until the degree and order of the harmonic 

coefficients reach 50 by 50. If more degree-and-order 

harmonic coefficients are applied, the computation time 

differences increase remarkably, as shown in Table 3. For 

the 60 by 60 case, the computation time with Method A 

showed a time of approximately 197. 84 sec (3.30 min), and 

with Method B, a time of 36.30 sec (0.61 min) is required, 

leading to a difference of about 2.61 min. When the degree 

and order are 70 by 70, it was found that a time of 1,034.69 

sec (17.24 min) is required with Method A. For Method 

B in this case, the time is 54.33 sec (0.91 min), showing 

an approximate difference of 16.33 min. If more degrees 

and orders of harmonic coefficients are computed with 

Method A, the required computing time reaches nearly 

3.53 hours (12,685.756 sec for the 80 by 80 case) and about 

18.15 hours (65,324.154 sec for the 90 by 90 case), while the 

Table 2. Processing time comparison for circular lunar mapping orbits at an 
altitude of 100 km with six different inclinations.

Inclination (deg)
Processing time 

(sec) (min)
0 319.531 5.326

30 235.438 3.924
60 233.703 3.895
90 317.640 5.294

120 230.656 3.844
150 233.328 3.889

Table 3. Processing time comparisons between simulations made with 
Methods A and B. Method A was a conventional computation method while 
Method B adapted the forward column method with fnALFs. 
Degree and 

order
Processing time 

with Method A, ①
Processing time 

with Method B, ② 
Processing time 

differences, ①-② 
10 by 10 2.718 (sec) 1.296 (sec) 1.422 (sec)
20 by 20 5.015 (sec) 3.672 (sec) 1.343 (sec)
30 by 30 9.016 (sec) 8.243 (sec) 0.773 (sec)
40 by 40 15.093 (sec) 14.562 (sec) 0.531 (sec)
50 by 50 28.515 (sec) 24.578 (sec) 3.937 (sec)
60 by 60 197.843 (sec) 36.296 (sec) 161.547 (sec)
70 by 70 1034.687 (sec) 54.328 (sec) 980.359 (sec)
80 by 80 12685.756 (sec) 71.046 (sec) 12614.710 (sec)
90 by 90 65324.154 (sec) 90.437 (sec) 65233.717 (sec)

100 by 100 N/A 110.953 (sec) N/A
110 by 110 N/A 134.343 (sec) N/A
120 by 120 N/A 160.500 (sec) N/A
130 by 130 N/A 190.343 (sec) N/A
140 by 140 N/A 221.421 (sec) N/A
150 by 150 N/A 253.109 (sec) N/A
165 by 165 N/A 317.640 (sec) N/A
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processing times with Method B are still within minutes, 

i.e., less than 2 min (1.17 min for 80 by 80 and 1.51 min for 

90 by 90). For the other higher degree-and-order cases, the 

computation time only with Method B was measured, with 

all of the results being less than 317.64 sec (5.33 min) to 

process the harmonic coefficients. Therefore, it is clear that 

the computation time differences between with Methods A 

and B will increase greatly when considering degree-and-

order harmonic coefficients which exceed 90 by 90. Without 

a doubt, such a long computation time with Method A is 

indeed hopelessly inefficient; therefore, utilizing Method 

B is likely a better choice when evaluating accelerations 

due to the higher degree-and-order gravitational potential 

function, as orbit predictions play key roles in every 

mission-related analysis. 

In addition to the computation time inefficiencies, 

another critical point is that the prediction accuracy levels 

are degraded when simulated with Method A. Therefore, 

the tendency of the degradation accuracy is analyzed when 

different orders of degree spherical harmonics are applied. 

To analyze the accuracy degradation, all simulation results 

using Methods A and B are compared to those obtained 

from STK/Astrogator. To compare these results, the same 

validation strategy shown in Table 1 (states obtained from 

STK/Astrogator are assumed to be reference values and the 

results obtained using Method A or Method B are subtracted 

to derive every absolute magnitude of the delta states in the 

M-MME2000 frame) is applied. Once again, it is important 

to note that the current simulation compares the results at 

an altitude of 100 km with a circular, polar orbit around the 

moon with seven days of orbit prediction. In Tables 4 and 5, 

orbit prediction accuracy comparison results between STK/

Astrogator and the results obtained using Methods A and B, 

respectively, are shown. 

Through a careful investigation of Table 4, it can be 

seen that the orbit prediction accuracy between STK/

Astrogator and Method A remain at less than 10 cm for the 

position and less than 0.1 mm/s for the velocity magnitude 

until degree-and-order of spherical harmonics of 50 by 50 

are applied. However, as the applied degree and order of 

the harmonic coefficients are increased, the differences 

in the predicted position states are also increased. The 

order of the differences reached the m level (about 16.14 

m for the position magnitude) with degree-and-order 

harmonic coefficients of 90 by 90. The predicted velocity 

magnitude differences also increased, showing differences 

of approximately 1.43 cm/s. This velocity difference is 

quite large, at nearly 100 times greater than the differences 

observed when degree-and-order harmonic coefficients of 

less than 50 by 50 are applied. Also, in the results shown in 

Table 2, the increase in the moment of the orbit prediction 

difference nearly matched the moment when the required 

computing time starts to increase. Although these are trivial 

results, they confirm that an evaluation of perturbing forces 

due to a high-degree-and-order gravitational potential 

function with Method A can also lead to unexpected 

Table 5. Orbit prediction accuracy comparisons between STK/Astrogator and Method B when different orders and degrees of harmonic coefficients are applied.
Degree and 

order
|Δrx|
(cm)

|Δry|
(cm)

|Δrz|
(cm)

|Δr |
(cm)

|ΔVx|
(cm/s)

|ΔVy|
(cm/s)

|ΔVz|
(cm/s)

|ΔV |
(cm/s)

10 by 10 0.004 0.004 0.045 0.045 < 0.000 < 0.000 < 0.000 < 0.000
20 by 20 1.098 0.107 7.319 7.401 0.007 < 0.000 0.001 0.007
30 by 30 1.739 0.159 11.168 11.304 0.010 < 0.000 0.003 0.010
40 by 40 0.513 0.048 3.212 3.253 0.003 < 0.000 0.001 0.003
50 by 50 0.325 0.022 2.023 2.049 0.002 < 0.000 < 0.000 0.002
60 by 60 2.482 0.215 15.178 15.381 0.014  0.001 0.003 0.014
70 by 70 3.607 0.313 22.686 22.973 0.020 < 0.000 0.003 0.020
80 by 80 0.565 0.056 3.316 3.3642 0.003 < 0.000 0.001 0.003
90 by 90 2.005 0.160 12.410 12.572 0.011 < 0.000 0.002 0.012

Table 4. Orbit prediction accuracy comparisons between STK/Astrogator and Method A when different orders and degrees of harmonic coefficients are applied.
Degree and 

order
|Δrx|
(cm)

|Δry|
(cm)

|Δrz|
(cm)

|Δr |
(cm)

|ΔVx|
(cm/s)

|ΔVy|
(cm/s)

|ΔVz|
(cm/s)

|ΔV |
(cm/s)

10 by 10 0.004 0.004 0.041 0.041 < 0.000 < 0.000 < 0.000 0.000
20 by 20 1.001 0.107 7.335 7.404 0.007 < 0.000 0.001 0.007
30 by 30 1.740 0.159 9.173 9.338 0.010 < 0.000 0.001 0.009
40 by 40 0.512 0.048 3.212 3.253 0.003 < 0.000 0.001 0.003
50 by 50 0.312 0.021 1.946 1.971 0.002 < 0.000 < 0.000 0.002
60 by 60 2.360 0.204 14.910 15.097 0.013 < 0.000 0.002 0.013
70 by 70 3.230 0.278 20.074 20.334 0.018 < 0.000 0.003 0.018
80 by 80 27.932 2.550 178.271 180.464 0.158 0.001 0.025 0.160
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performance degradation during numerical simulations. In 

Table 5, the orbit prediction accuracy is compared between 

STK/Astrogator and Method B when different degrees 

and orders of harmonic coefficients are used. Unlike the 

results shown in Table 4, no serious degradation of the 

orbit prediction accuracy is observed in this case. Every 

predicted difference between STK/Astrogator and Method B 

as less than 22.97 cm for the position (the largest difference 

was noted with 70 by 70) and less than approximately 0.14 

mm/s for the velocity (the largest difference arose with 

60 by 60) magnitude, even when harmonic coefficients 

of 90 by 90 are considered. These results indicate that an 

evaluation of perturbing forces due to high-degree-and-

order gravitational potential functions with Method B 

not only reduces the processing time but also guarantees 

the prediction accuracy. However, one may note that the 

prediction accuracy between Method A and B is almost 

identical until consideration of harmonic coefficients of 

70 by 70, except the processing time. From these results, it 

can be concluded that numerical errors which arise during 

the process of evaluating ALFs can cause serious orbit 

prediction accuracy degradation, even when the other 

systemic algorithms and parameters used in simulations 

are identical between Methods A and B. Therefore, if orbit 

predictions are planned with longer prediction durations 

with higher degree-and-order harmonics shown in the 

current study, more serious computing time inefficiencies 

and more severe accuracy degradation may be observed.

4. CONCLUSIONS

In this paper, a proven and efficient means of evaluating  

perturbing forces due to higher degree-and-order gravitational  

harmonics due to the non-sphericity of a central body is 

described and implemented into a previously developed 

precise lunar orbit propagator. Unlike former work which 

used a conventional computation method, the current 

work adapted a well-known recursion formula that directly 

adapts fully normalized associated Legendre functions 

while processing the gravitational harmonics coefficients. 

This implementation is intended not only to reduce 

the computation time but also to prevent the accuracy 

degradation which can arise during numerical simulations. 

To validate the performance of the implemented algorithm, 

predicted orbit solutions are compared to solutions obtained 

from STK/Astrogator. Enhancements of the computation time 

and the accuracy degradation tendencies are also compared 

in the results obtained from earlier and the current work. For 

test cases, the orbit of a fictitious lunar orbiter is predicted 

for approximately seven days in earth time. It is assumed to 

have a circular orbit with an altitude of 100 km with various 

orbital inclinations. As a result of the performance validation, 

the differences in the predicted orbital states between STK/

Astrogator and the current work were all less than 1 m for the 

position and 1 mm/s for the velocity accuracy, even under 

different orbital inclinations with full-degree-and-order 

gravitational coefficients (165 by 165). For a comparison of 

the computation time, there were no significant differences 

between the method applied in the previous and current work 

until the degree and order of the gravitational coefficients 

reached 50 by 50. However, a significant amount time was 

saved by adapting the current method with high-degree-

and-order harmonic coefficients. The conventional method 

used in earlier work required about 18.15 hours of computing 

time to predict a seven-day orbit with 90 by 90 harmonic 

coefficients, while the time with the simulation with the 

current method remained within minutes, i.e., at about 5.33 

min, even with coefficients of 165 by 165. For numerical 

accuracy comparisons, the utilizing current method matched 

the solutions obtained from STK/Astrogator within tens of cm 

for the position and within mm/s for the velocity when 90 by 

90 harmonic coefficients are considered. However, the order 

of the predicted states increased greatly to nearly tens of m 

for the position and cm/s for the velocity when the previous 

method was utilized. Given these results, it can be concluded 

that both the computation time and prediction accuracy can 

be enhanced with the proposed method, especially when 

evaluating high-degree-and-order harmonic coefficients. 

As the performance of the implemented algorithm is 

firmly validated, it can be applied to the development of an 

operational flight dynamics subsystem for the future lunar 

exploration mission of Korea and to analyze various mission 

scenarios that require precise flight dynamics to operate in 

very close proximity to the moon.
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