• Title/Summary/Keyword: hardware complexity

Search Result 728, Processing Time 0.025 seconds

Effective hardware design for DCT-based Intra prediction encoder (DCT 기반 인트라 예측 인코더를 위한 효율적인 하드웨어 설계)

  • Cha, Ki-Jong;Ryoo, Kwang-Ki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.4
    • /
    • pp.765-770
    • /
    • 2012
  • In this paper, we proposed an effective hardware structure using DCT-based inra-prediction mode selection to reduce computational complexity caused by intra mode decision. In this hardware structure, the input block is transformed at first and then analyzed to determine its texture directional tendency. the complexity has solved by performing intra prediction in only predicted edge direction. $4{\times}4$ DCT is calculated in one cycle using Multitransform_PE and Inta_pred_PE calculates one prediction mode in two cycles. Experimental results show that the proposed Intra prediction encoding needs only 517 cycles for one macroblock encoding. This architecture improves the performance by about 17% than previous designs. For hardware implementation, the proposed intra prediction encoder is implemented using Verilog HDL and synthesized with Megnachip $0.18{\mu}m$ standard cell library. The synthesis results show that the proposed architecture can run at 125MHz.

Design of Low-Power and Low-Complexity MIMO-OFDM Baseband Processor for High Speed WLAN Systems (고속 무선 LAN 시스템을 위한 저전력/저면적 MIMO-OFDM 기저대역 프로세서 설계)

  • Im, Jun-Ha;Cho, Mi-Suk;Jung, Yun-Ho;Kim, Jae-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11C
    • /
    • pp.940-948
    • /
    • 2008
  • This paper presents a low-power, low-complexity design and implementation results of a high speed multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) wireless LAN (WLAN) baseband processor. The proposed processor is composed of the physical layer convergence procedure (PLCP) processor and physical medium dependent (PMD) processor, which have been optimized to have low-power and reduced-complexity architecture. It was designed in a hardware description language (HDL) and synthesized to gate-level circuits using 0.18um CMOS standard cell library. As a result, the proposed TX-PLCP processor reduced the power consumption by as much as 81% over the bit-level operation architecture. Also, the proposed MIMO symbol detector reduced the hardware complexity by 18% over the conventional SQRD-based architecture with division circuits and square root operations.

User and Antenna Joint Selection Scheme in Multiple User Massive MIMO Networks (다중 사용자 거대 다중 안테나 네트워크에서의 사용자 및 안테나 선택 기법)

  • Ban, Tae-Won;Jeong, Moo-Woong;Jung, Bang Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.77-82
    • /
    • 2015
  • Recently, multi-user massive MIMO (MU-Massive MIMO) network has attracted a lot of attention as a technology to accommodate explosively increasing mobile data traffic. However, the MU-Massive MIMO network causes a tremendous hardware complexity in a base station and computational complexity to select optimal set of users. In this paper, we thus propose a simple algorithm for selecting antennas and users while reducing the hardware and computational complexities simultaneously. The proposed scheme has a computational complexity of $O((N-S_a+1){\times}min(S_a,K))$, which is significantly reduced compared to the complexity of optimal scheme based on Brute-Force searching, $$O\left({_N}C_S_a\sum_{i=1}^{min(S_a,K)}_KC_i\right)$$, where N, $S_a$, and K denote the number of total transmit antennas, the number of selected antennas, and the number of all users, respectively.

Design of Systolic Multipliers in GF(2$^{m}$ ) Using an Irreducible All One Polynomial (기약 All One Polynomial을 이용한 유한체 GF(2$^{m}$ )상의 시스톨릭 곱셈기 설계)

  • Gwon, Sun Hak;Kim, Chang Hun;Hong, Chun Pyo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.8C
    • /
    • pp.1047-1054
    • /
    • 2004
  • In this paper, we present two systolic arrays for computing multiplications in CF(2$\^$m/) generated by an irreducible all one polynomial (AOP). The proposed two systolic mays have parallel-in parallel-out structure. The first systolic multiplier has area complexity of O(㎡) and time complexity of O(1). In other words, the multiplier consists of m(m+1)/2 identical cells and produces multiplication results at a rate of one every 1 clock cycle, after an initial delay of m/2+1 cycles. Compared with the previously proposed related multiplier using AOP, our design has 12 percent reduced hardware complexity and 50 percent reduced computation delay time. The other systolic multiplier, designed for cryptographic applications, has area complexity of O(m) and time complexity of O(m), i.e., it is composed of m+1 identical cells and produces multiplication results at a rate of one every m/2+1 clock cycles. Compared with other linear systolic multipliers, we find that our design has at least 43 percent reduced hardware complexity, 83 percent reduced computation delay time, and has twice higher throughput rate Furthermore, since the proposed two architectures have a high regularity and modularity, they are well suited to VLSI implementations. Therefore, when the proposed architectures are used for GF(2$\^$m/) applications, one can achieve maximum throughput performance with least hardware requirements.

Design of an Area-Efficient Reed-Solomon Decoder using Pipelined Recursive Technique (파이프라인 재귀적인 기술을 이용한 면적 효율적인 Reed-Solomon 복호기의 설계)

  • Lee, Han-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.7 s.337
    • /
    • pp.27-36
    • /
    • 2005
  • This paper presents an area-efficient architecture to implement the high-speed Reed-Solomon(RS) decoder, which is used in a variety of communication systems such as wireless and very high-speed optical communications. We present the new pipelined-recursive Modified Euclidean(PrME) architecture to achieve high-throughput rate and reducing hardware-complexity using folding technique. The proposed pipelined recursive architecture can reduce the hardware complexity about 80$\%$ compared to the conventional systolic-array and fully-parallel architecture. The proposed RS decoder has been designed and implemented with the 0.13um CMOS technology in a supply voltage of 1.2 V. The result show that total number of gate is 393 K and it has a data processing rate of S Gbits/s at clock frequency of 625 MHz. The proposed area-efficient architecture can be readily applied to the next generation FEC devices for high-speed optical communications as well as wireless communications.

New Low-Power and Small-Area Reed-Solomon Decoder (새로운 저전력 및 저면적 리드-솔로몬 복호기)

  • Baek, Jae-Hyun;SunWoo, Myung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.6
    • /
    • pp.96-103
    • /
    • 2008
  • This paper proposes a new low-power and small-area Reed-Solomon decoder. The proposed Reed-Solomon decoder using a novel simplified form of the modified Euclid's algorithm can support low-hardware complexity and low-Power consumption for Reed-Solomon decoding. The simplified modified Euclid's algorithm uses new initial conditions and polynomial computations to reduce hardware complexity, and thus, the implemented architecture consisting of 3r basic cells has the lowest hardware complexity compared with existing modified Euclid's and Berlekamp-Massey architectures. The Reed-Solomon decoder has been synthesized using the $0.18{\mu}m$ Samsung standard cell library and operates at 370MHz and its data rate supports up to 2.9Gbps. For the (255, 239, 8) RS code, the gate counts of the simplified modified Euclid's architecture and the whole decoder excluding FIFO memory are only 20,166 and 40,136, respectively. Therefore, the proposed decoder can reduce the total gate count at least 5% compared with the conventional DCME decoder.

Hierarchical Network Synchronization of STAR Network based on TDMA (STAR 망 TDMA시스템의 계층적 망동기 방식)

  • Yoon, Juhyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.1
    • /
    • pp.77-84
    • /
    • 2014
  • In this paper, we propose the hierarchical network synchronization scheme that is backward compatible for the existing commercial system, efficient for total system performance, and whose hardware modification is minimized. This system performance is, the relationship among bandwidth efficiency, complexity and MODEM performance, and superiority of network system applicability. The proposed structure can remedy the high hardware complexity and the lower accuracy of network sychronization that the existing satellite communication terminal system in the star network based on TDM/MF-TDMA of DVB-S2/RCS standards has. Besides, It has high efficiency in view of cost and system performance if the system designed for satellite broadcast requires system upgrade. In the body section, its hardware complexity and system performance of the proposed algorithm is analysed theoretically and treated with the related parameters(symbol rate, spreading factor, etc.) and the BER performance of control channel through the computer simulation for its verification that it can be applied for communications system.

ICS(Interference Cancellation System) in Wireless Repeater Using Complex Singed Singed LMS Algorithm (Complex Singed-Singed LMS 적응 알고리즘을 사용한 간섭제거 중계기(ICS)연구)

  • Lee, Seong-Jae;Park, Yong-Wan;Hong, Seung-Mo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.10
    • /
    • pp.53-59
    • /
    • 2011
  • In recent years, mobile communication service is used extensively as a larger service area for the maintenance of quality of service required by the expansion of service areas and As the ever-increasing role in relays, and the location is relatively easy to install and less constrained costs, operating cost savings in terms of ICS(Interference Cancellation System) repeaters are required. However, an adaptive algorithm that is applied when updating the filter due to the increase in volume of operations increase the complexity of hardware implementation is fraught with many difficulties. In this paper, if there is a path that feedback. ICS repeater utilizing baseband signal processing for the removal of interfering signals from the feedback operation, significantly reducing the amount of reducing hardware complexity Complex Singed Signed LMS adaption algorithm is proposed. Proposed algorithm for evaluating the performance of Static channel WCDMA signal environment for the ICS, the results of the simulation algorithm, convergence speed and better performance in therms of convergence errors that are required through the implementation of the operation greatly reduces the amount of hardware complexity able to reduce the effect was visible.

Design of Low-Complexity 128-Bit AES-CCM* IP for IEEE 802.15.4-Compatible WPAN Devices (IEEE 802.15.4 호환 WPAN 기기를 위한 낮은 복잡도를 갖는128-bit AES-CCM* IP 설계)

  • Choi, Injun;Lee, Jong-Yeol;Kim, Ji-Hoon
    • Journal of IKEEE
    • /
    • v.19 no.1
    • /
    • pp.45-51
    • /
    • 2015
  • Recently, as WPAN (Wireless Personal Area Network) becomes the necessary feature in IoT (Internet of Things) devices, the importance of data security also hugely increases. In this paper, we present the low-complexity 128-bit AES-$CCM^*$ hardware IP for IEEE 802.15.4 standard. For low-cost and low-power implementation which is essentially required in IoT devices, we propose two optimization methods. First, the folded AES(Advanced Encryption Standard) processing core with 8-bit datapath is presented where composite field arithmetic is adopted for reduced hardware complexity. In addition, to support $CCM^*$ mode defined in IEEE 802.15.4, we propose the mode-toggling architecture which requires less hardware resources and processing time. With the proposed methods, the gate count of the proposed AES-$CCM^*$ IP can be lowered up to 57% compared to the conventional architecture.