본 논문에서는 2차원 영상의 단일 프레임을 이용한 실시간 입체 영상 변환 방법을 제안하였다. 2차원 영상의 단일 프레임에서 객체의 수직 위치 정보에 기반하여 깊이 지도를 생성하고, 시차 처리를 통해 입체 영상으로 변환한다. 입체 영상 변환의 실시간 처리와 하드웨어 구현에 따른 복잡도 감소를 위해 영상 샘플링과 표준 휘도화를 통한 객체 분할, 그리고 경계 스캔을 통한 깊이 지도 생성을 수행한다. 제안한 방법은 단일 프레임만을 이용하므로 운동 방향과 속도, 장면 전환에 상관없이 3차원 효과를 제공하며, 동영상뿐만 아니라 정지 영상에도 적용 가능하다. 단일 프레임만을 이용하여 영상 내 객체들의 수직 위치 정보에 의한 차등 깊이감을 제시하기 때문에 본 논문에서 가정한 영상의 구도 조건에 적합한 원거리 촬영 영상이나 풍경, 파노라마 사진과 같은 영상에서 효과적인 입체 영상 변환 효과를 제시한다. 제안한 방법의 성능 평가를 위해 시각적 검증과 APD(Absolute Parallax Difference)를 도입하여 기존의 MTD 방식과의 비교를 수행하였다. 제안한 방법에 의한 입체 변환 영상이 영상의 운동 방향이나 속도에 상관없이 입체 변환 효과를 나타냄을 확인하였다.
광폭입력함수 전용 멀티플렉서가 슬라이스 구조에 포함되는 상용 FPGA의 현실적 제약 조건을 학계의 대표적 논리 표현 방식인 AIG (And-Inverter Graph)를 근간으로 개발된 FPGA 매핑 알고리즘에 적용하였다. AIG를 LUT (Look-Up Table)으로 매핑할 때 중간 구조로서 컷을 열거하는 데 이들 중에서 멀티플렉서를 인식해 낸 후 이들이 매핑될 때 지연 시간 및 면적을 복잡도 증가 없이 계산하도록 하였다. 이 때 트리 형성 전제 조건인 대칭성과 단수 제약 요건도 검사하도록 하였다. 또한, 멀티플렉서 트리의 루트 위치를 RTL 코드에서 찾아내고 이를 보조 출력 형태로 AIG에 추가하도록 하였다. 이 위치에서 섀넌확장을 통해 멀티플렉서 트리 구조를 의도적으로 합성한 후 최적 AIG에 겹치도록 하는 접근 방법을 최초로 제안하였다. 이때 무손실 합성을 가능하게 하는 FRAIG 방식이 응용되었다. 두 가지 프로세서에 대해 제안된 접근 방법과 기법들을 적용하여 약 13~30%의 면적 감소 및 최대 32%까지의 지연 시간 단축을 달성하였다. AIG 트리에 특정 구조를 의도적으로 주입시키는 접근 방법은 향후 캐리 체인 등에 확장 적용하는 연구가 진행될 것이다.
오버샘플링(oversampling) 방식의 시그마-델타(sigma-delta) A/D 컨버터에서는 오버샘플링된 신호를 최종 Nyquist rate 으로 낮춰주는 디지털 데시메이션 필터가 필수적이다. 본 논문에서는 면적을 크게 줄이면서 time-to-market의 이점을 가져다주는 고해상도 시그마-델타(sigma-delta) A/D 컨버터용 디지털 데시메이션(decimation) 필터의 Verilog-HDL 설계 및 구현을 보였다. 디지털 데시메이션 필터는 CIC(cascaded integrator-comb) filter와 두 개의 half-band FIR filter로 이루어져 있다. FIR필터에서 곱셈연산의 복잡성을 줄이고 면적을 최소화하기 위해 계수를 CSD(canonical signed digit) 코드로 표현하여 사용하였다. 곱셈 연산은 일반 곱셈기 없이 쉬프트 와 덧셈방식을 이용하여 구현되었다. 3단 데시메이션 필터는 $0.25-{\mu}m$ CMOS 공정으로 제작되었고, 필터의 면적은 $1.36mm^2$ 이며 2.8224 MHz의 클럭 주파수에서 4.4 mW의 파워소모를 보였다. 측정 결과 높은 신호대 잡음 비(SNR)를 요구하는 디지털 오디오용 데시메이션(decimation) 필터의 사양을 충분히 만족시키고 있음을 볼 수 있다.
현재까지 다수의 버스 프로토콜과 구조가 발표되었지만, 대부분 공유 버스 구조를 가져 시스템 성능 저하의 원인이 되었다. 기존의 공유버스가 갖는 문제점들을 해결하기 위해 고성능의 버스 프로토콜인 SNP (SoC Network Protocol)와 버스 구조인 SNA (SoC Network Architecture)가 제안되었는데, 이를 수정/개선한 버스 구조를 제안하고자 한다. 개선된 SNA는 다중 마스터의 다중 버스 요청에 대해 다중 라우팅을 지원함으로써 성능을 향상시켰으며, 내부 라우팅 로직의 최적화로 면적을 감소시켰다. 또한 성능감소 없이 AMBA AHB 프로토콜과 완벽히 호환 가능한 XSNP(Extended SNP)를 인터페이스 프로토콜로 사용한다. 현재 라우팅 로직을 최적화하여 개선된 SNA의 하드웨어 복잡도가 크게 증가하지 않았고, 기존 SNP를 사용하는 IP는 호환성 문제나 성능 감소 없이 개선된 SNA를 통해 통신할 수 있다. 더불어, SNA는 AMBA AHB와 인터커넥트 버스 매트릭스를 대체할 수 있으며, 다중 채널을 동시에 보장하고 다양한 토플로지를 지원가능 하도록 설계되어 사용하는 IP 수에 따라 설계자에 의해 다양한 토플로지를 선택할 수 있다. 한편, SNA는 적은 수의 인터페이스 와이어를 가지기 때문에 오프 칩 버스로도 사용될 수 있다. 제안된 버스 구조는 시뮬레이션과 어플리케이션 동작을 통해 검증이 완료되었다.
슈퍼스칼라 프로세서에서 리오더 버퍼의 복잡도를 줄이는 여러 가지 방법이 제시되었다. 그 중에서 리오더 버퍼의 포트를 가장 단순하게 하는 방법은 하나로 되어 있는 리오더 버퍼의 구조를 실행 유닛의 개수만큼 여러 개로 나누어 분산된 리오더 버퍼로 구현하는 것이다. 각각의 분산된 리오더 버퍼는 실행 유닛의 작업 부하에 따라 그 크기를 달리 할 수 있다. 하지만 분산된 리오더 버퍼의 크기에 따라 성능의 변화가 크다. 지금까지의 분산된 리오더 버퍼로 나누는 연구는 적절한 크기를 결정하기 위해 시뮬레이션 결과에 기반 하여 직관적으로 유추하였다. 본 논문은 분산된 리오더 버퍼에 M/M/1 큐잉 이론을 이용한 수학적모델을 적용하여 최적의 크기를 결정하고 CPU2000 벤치마크 프로그램을 수행하여 성능을 측정하고 평가하였으며 기존 슈퍼스칼라 프로세서 성능의 99.2%를 보여주는 분산된 리오더 버퍼의 최적 크기를 정할 수 있었다. 기존의 리오더 버퍼와 본 논문에서 제시한 분산된 리오더 버퍼를 HDL로 구현하였을 때 포트에서 82%의 하드웨어 자원과 30%이상의 지연시간을 줄였다.
피부, 옷 등 실세계의 대부분의 물질들은 반투명한 재질로 되어있고, 부드러운 외양을 띄고 있다. 본 논문에서는 GPU 기반의 계층화 알고리즘을 통해, 양극 확산 (dipole diffusion) 기법에 기반한 표면 내에서의 빛의 산란에 의한 조명을 근사하여 반투명한 재질을 실시간에 렌더링하는 기법을 제안한다. 무수히 많은 수의 픽셀 빛 입자들은 GPU를 활용하여 쿼드트리로 계층화된다. 렌더링될 각 픽셀마다, 많은 빛 입자를 대신하여 좋은 화질로 근사할 수 있는 집합들을 선택하고, 이것을 사용하여 조명을 계산한다. 우리는 또한, 고해상도 이미지를 효율적으로 렌더링하기 위해 공간적 일관성과 early-z 컬링을 이용한 계층적 화면 보간 기법을 소개한다. 이를 위하여, 화면 정보를 GPU 상에서 계층화한다. 우리는 공간적 유사도가 높은 픽셀들을 하나의 픽셀로 렌더링함으로써 적응적으로 보간한다. 실험을 통해 빛 계층화를 통해 반투명한 물체를 실시간에 렌더링할 수 있음을 확인하였다. 화면 보간 기법은 동급 화질에서 렌더링 비용을 $2{\sim}4$배 정도 감소시켰다. 모든 과정은 GPU를 사용한 이미지 공간 상에서 빠르게 수행되며, 어떠한 긴 전처리과정도 필요하지 않는다.
본 논문에서는 차세대 통신망을 위한 G.729.1 광대역 음성 코덱을 활용한 인터넷 단말을 구현한 절차와 결과에 대해 기술하였다. 이러한 목적을 이루기 위해 먼저 음성 코덱 처리를 위한 DSP 기능을 가지며, 비디오 코덱 처리를 위한 향상된 멀티미디어 가속기 기능을 가진 고성능 RISC 응용 프로세서를 선택하였다. 단말 구현에 사용한 G.729.1 광대역 음성 코덱은 ITU-T에서 최근 표준화 된 것으로 G.729 음성 코덱 표준을 확장한 새로운 스케일러블 음성 및 오디오 코덱이다. G.729.1 코덱의 프로세서에서 처리 시간을 줄이고, 단말에 적용하기 위해 계산량이 많이 필요한 부분의 고정 소수점 C 코드를 어셈블리 언어로 변환하였다. 그 결과 원시 C 코드의 실행 시간을 약 80% 줄여서 단말에서 실시간으로 동작시켰다. 비디오 코덱은 프로세서의 eMMA 하드웨어에서 지원되는 H.263/MPEG-4 코덱을 사용하였다. 실제 망에 접속판 SIP 호 처리 시험에서 단 대 단 지연은 100ms 이하이고, PESQ 장비로 측정한 MOS 값은 평균 3.8 이었으며, 상용 단말들과의 연동 시험에서도 정상적으로 동작하였다.
기존의 IS-95 시스템에서는 다중경로 신호의 컴바이닝을 위해 레이크 수신기의 각 핑거에 시간 정렬 버퍼(time-deskew buffer or FIFO)를 사용하였다. IS-95 시스템의 경우, 단일 반송파를 사용하여 핑거의 수가 작고 확산 이득도 크기 때문에, 버퍼의 수와 크기가 작아서 기존 방식으로 설계해도 크게 문제가 되지않았다. 그러나, cdma2000 시스템에서는 고속의 데이터를 다중 반송파에 분할하여 보내고 확산 이득도 매우 작기 때문에, FIFO의 수와 크기는 매우 커지고 버퍼의 하드웨어 복잡도가 증가하여 설계의 큰 걸림돌이 된다. 따라서, 본 논문에서는 cdma2000 시스템용 레이크 수신기에서 FIFO의 수를 줄이기 위해, 심볼 정렬과 컴바이닝을 동시에 수행할 수 있는 새로운 심볼 정렬 및 컴바이닝 기법을 제안하고자 한다. 레이크 수신기당 3개의 핑거를 사용하는 경우, 제안된 방식은 기존 방식 보다 버퍼의 하드웨어 복잡도를 약 60% 이상 줄일 수 있고, 4개의 핑거를 사용하는 경우에는 약 70%이상을 줄일 수 있다. 더욱이, 제안된 알고리듬은 핑거의 수에 상관없이 복조하고자 하는 채널당 1개의 FIFO 레지스터를 사용하기 때문에, 성능향상을 위해 많은 수의 핑거를 사용하는 시스템에도 매우 효율적이다.
스마트폰의 등장과 함께 사용자들은 다양한 애플리케이션을 통해 보다 효율적으로 모바일폰을 구성할 수 있게 되었다. 하지만, 스마트폰의 발전에도 불구하고 스마트폰의 배터리는 휴대성을 제한하고 있다. 스마트폰의 전력 효율성은 컴퓨터 시스템 연구 분야에서 아주 중요한 이슈이다. 본 논문에서는 스마트폰의 전력 효율성을 알아보기 위해 여러 구성 변수를 선택하여 실험을 수행하였다. 구성 변수로는 프로세서, 디스플레이, 운영체제를 고려하였고 각 구성 변수에 따라 여러 개의 애플리케이션을 활용하여 실험하였다. 실험 결과, 프로세서의 복잡도에 따라서도 전력 소비량이 증가하였고, 디스플레이크기 증가에 따라 전력소비량 또한 증가하였다. 하지만, 운영체제에서는 다른 전력 소비 패턴을 보였다. Android 운영체제의 경우 인터넷과 영상처리 애플리케이션에서 높은 전력 소비량을 보이며 음악 감상, 카메라 애플리케이션에서 낮은 전력 소비량을 보였다. iOS의 경우에는 게임과 인터넷 애플리케이션에서 높은 전력 소비량을 보이며 카메라와 영상처리에서 낮은 전력 소비량을 보였다. 전체적으로 Android 운영체제보다 iOS 운영체제에서 전력 효율성이 높음을 알 수 있었다. 이는 iOS는 하드웨어와 운영체제를 병행하여 개발하기 때문에 Android보다 최적화가 잘 이뤄진 것으로 판단된다. 또한, Android는 하드웨어에 최적화된 운영체제 수정이 필요함을 실험을 통해 알 수 있었다.
본 논문은 중심 화소값과 인접 가해 성분값의 평균으로 축소 성분값을 산출함으로써 ZOD(Zero Order Decimation)와 FOD(First Order Decimation)의 장점을 적응적으로 반영한 디지털 문서 영상 축소 알고리즘의 성능을 분석함에 그 목적이 있다. 제안된 방법은, 슬라이딩 윈도우의 중앙에 위치되는 중심 화소를 축소 성분값의 주성분으로 선택하고, 1차 미분 연산자를 이용하여 중심 화소의 우측 및 하측 인접 화소의 기울기의 크기를 각각 계산한다. 이후, 두 기울기의 크기를 합산한 결과로 각 기울기의 크기를 나누어 우측 및 하측 인접 화소 각각의 국부 가해 가중치를 구한다. 다음으로, 각각의 국부 가해 가중치를 우측 및 하측 인접 화소값에 곱한 후에 그 결과를 합산함으로써 인접 가해 성분값을 산출한다. 이렇게 구한 인접 가해 성분값과 중심 화소값을 평균하여 축소 성분값을 구하는 과정을 입력 영상의 모든 화소들에 반복적으로 수행함으로써 축소 영상을 얻을 수 있다. 본 논문에서는 주관적인 성능과 하드웨어 복잡도 측면에서 제안된 방법과 기존의 각 방식에 대한 성능을 분석했고. 이러한 분석 결과를 토대로 개선된 디지털 문서 영상 축소 알고리즘을 개발하기 위한 바람직한 접근법에 대해 고찰했다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.