• Title/Summary/Keyword: hand motion

Search Result 917, Processing Time 0.028 seconds

Prevention of Work-related Musculoskeletal Disorders in Grapes Pinching by Using Electro-motion Scissors Designed Ergonomically

  • Chae, Hye-Seon;Kim, Sung-Cheol;Kim, Kwan-Woo;Lee, Kyung-Suk;Kim, Hoy-Cher;Park, Keun-Sang
    • 대한인간공학회지
    • /
    • 제30권6호
    • /
    • pp.749-755
    • /
    • 2011
  • Objective: The purpose of this study is to assess the reducing effect of workload on developed electro-motion scissors. Methods: To achieve this, we measured the pressure distribution, Joint angle of fingers and JSI(Job Strain Index) for electro-motion scissors and hand-operated scissor in objective assessment and surveyed the uncomfortable degree in subjective assessment. Results: As a result, The peak of pressure in the electro-motion scissors was generally lower than the hand-operated scissors. JSI and overall joint angle of fingers for the electro-motion scissors were remarkably lower than the hand-operated scissors. Also, the subjective uncomfortable degree showed that the uncomfortable point of electro-motion scissors were generally lower than the hand operated scissors. Conclusion: The impact of reducing the work load as well as distributing the pressure around the hand by using electro-motion scissors during grapes pinching was confirmed.

손 동작 인식을 위한 Optical Flow Orientation Histogram (Optical Flow Orientation Histogram for Hand Gesture Recognition)

  • ;;오치민;이칠우
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 1부
    • /
    • pp.517-521
    • /
    • 2008
  • Hand motion classification problem is considered as basis for sign or gesture recognition. We promote optical flow as main feature extracted from images sequences to simultaneously segment the motion's area by its magnitude and characterize the motion' s directions by its orientation. We manage the flow orientation histogram as motion descriptor. A motion is encoded by concatenating the flow orientation histogram from several frames. We utilize simple histogram matching to classify the motion sequences. Attempted experiments show the feasibility of our method for hand motion localization and classification.

  • PDF

손동작 식별 규칙을 이용한 컴퓨터의 프레젠테이션 제어 (Presentation control of a computer using hand motion identification rules)

  • 이규원
    • 한국정보통신학회논문지
    • /
    • 제22권9호
    • /
    • pp.1172-1178
    • /
    • 2018
  • 손동작 인식을 통하여 컴퓨터 프레젠테이션을 제어하는 시스템을 제안한다. 제안하는 시스템은 손 동작의 다양한 운동 형태를 인식, 구분함으로써 부가적인 제어용 장치 없이 프레젠테이션을 제어한다. 손동작의 인식을 위하여 얼굴영역 검출과 손영역 검출을 시행한다. 하르분류기(Haar classifier)를 이용하여 얼굴영역을 검출하며, HSV 컬러모델상에서 피부 색상 정보에 따라 손영역을 검출한다. 얼굴 영역은 손동작의 시작과 끝, 동작의 크기 및 방향을 판단하는 기준으로 삼는다. 얼굴 영역으로부터 가로, 세로 중심축을 설정하고 제안하는 모션 식별룰에 따라 다양한 손동작을 인식하고 컴퓨터 제어에 이용한다. 약 1200회의 동작 인식 실험에서 97.2%의 인식률을 얻어 제안하는 알고리즘이 유효함을 확인하였다.

인간손의 동작과 모양을 모방한 휴머노이드 로봇손 설계 (Design of a Humanoid Robot Hand by Mimicking Human Hand's Motion and Appearance)

  • 안상익;오용환;권상주
    • 제어로봇시스템학회논문지
    • /
    • 제14권1호
    • /
    • pp.62-69
    • /
    • 2008
  • A specialized anthropomorphic robot hand which can be attached to the biped humanoid robot MAHRU-R in KIST, has been developed. This built-in type hand consists of three fingers and a thumb with total four DOF(Degrees of Freedom) where the finger mechanism is well designed for grasping typical objects stably in human's daily activities such as sphere and cylinder shaped objects. The restriction of possible motions and the limitation of grasping objects arising from the reduction of DOF can be overcome by reflecting a typical human finger's motion profile to the design procedure. As a result, the developed hand can imitate not only human hand's shape but also its motion in a compact and efficient manner. Also this novel robot hand can perform various human hand gestures naturally and grasp normal objects with both power and precision grasping capability.

웨어러블 센서를 활용한 경량 인공신경망 기반 손동작 인식기술 (A Light-weight ANN-based Hand Motion Recognition Using a Wearable Sensor)

  • 이형규
    • 대한임베디드공학회논문지
    • /
    • 제17권4호
    • /
    • pp.229-237
    • /
    • 2022
  • Motion recognition is very useful for implementing an intuitive HMI (Human-Machine Interface). In particular, hands are the body parts that can move most precisely with relatively small portion of energy. Thus hand motion has been used as an efficient communication interface with other persons or machines. In this paper, we design and implement a light-weight ANN (Artificial Neural Network)-based hand motion recognition using a state-of-the-art flex sensor. The proposed design consists of data collection from a wearable flex sensor, preprocessing filters, and a light-weight NN (Neural Network) classifier. For verifying the performance and functionality of the proposed design, we implement it on a low-end embedded device. Finally, our experiments and prototype implementation demonstrate that the accuracy of the proposed hand motion recognition achieves up to 98.7%.

지휘행동 이해를 위한 손동작 인식 (Hand Gesture Recognition for Understanding Conducting Action)

  • 제홍모;김지만;김대진
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2007년도 가을 학술발표논문집 Vol.34 No.2 (C)
    • /
    • pp.263-266
    • /
    • 2007
  • We introduce a vision-based hand gesture recognition fer understanding musical time and patterns without extra special devices. We suggest a simple and reliable vision-based hand gesture recognition having two features First, the motion-direction code is proposed, which is a quantized code for motion directions. Second, the conducting feature point (CFP) where the point of sudden motion changes is also proposed. The proposed hand gesture recognition system extracts the human hand region by segmenting the depth information generated by stereo matching of image sequences. And then, it follows the motion of the center of the gravity(COG) of the extracted hand region and generates the gesture features such as CFP and the direction-code finally, we obtain the current timing pattern of beat and tempo of the playing music. The experimental results on the test data set show that the musical time pattern and tempo recognition rate is over 86.42% for the motion histogram matching, and 79.75% fer the CFP tracking only.

  • PDF

영상기반의 안정적 수신호 인식기를 위한 손동작 패턴 설계 방법 (Hand Motion Design for Performance Enhancement of Vision Based Hand Signal Recognizer)

  • 손수원;배정훈;양철종;왕한;고한석
    • 대한전자공학회논문지SP
    • /
    • 제48권4호
    • /
    • pp.30-37
    • /
    • 2011
  • 본 논문에서는 수신호 인식기에 쓰이기 위한 분별성 있는 손동작을 만드는 방법을 제안한다. 기존의 수화DB에서 손의 움직임을 분석하여 기본 동작이 되는 4가지의 모션 프리미티브를 선정하였으며, 선정된 모션 프리미티브를 조합하여 구별성 있는 '기본 손동작 집합'을 제작하였다. 제안하는 '기본 손동작 집합' 의 구별성을 증명하기 위하여 '기본 손동작 집합' 인식기를 만들고 인식결과를 확인하였다. 사용된 인식기는 hidden Markov model (HMM) 을 기반으로 제작되었다. 기본 손동작 인식 task에 대한 성능평가 결과 99.01%로써 각 모델 간에 높은 구별성을 보이는 것을 확인할 수 있었다.

데이터 글로브를 이용한 3차원 손동작 인식 (3-D Hand Motion Recognition Using Data Glove)

  • 김지환;박진우;;김태성
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2009년도 학술대회
    • /
    • pp.324-329
    • /
    • 2009
  • Proactive computing의 핵심 기술인 손동작 인식 (Hand Motion Recognition, HMR) 기술은 인간과 컴퓨터 사이의 상호작용(Human Computer Interaction, HCI) 분야에서 많은 연구가 진행되고 있다. 본 연구에서는 3축 가속도 센서를 부착한 data glove를 제작하고, 3차원 손 모델을 구현한 후, 이를 이용한 손동작 인식 기술을 개발하였다. Data glove는 가상현실에 대한 입력 장치로써 본 논문에서는 3축 가속도 센서를 사용하여 획득된 신호를 wireless communication으로 PC에 전송할 수 있도록 구현하였다. 손 모델링은 ellipsoid를 이용한 kinematic chain 이론 바탕의 3차원 손 모델을 구현하였으며, data glove에서 얻어진 가속도 정보에 rule 기반의 알고리즘을 적용하여 구현된 3차원 손 모델을 통하여 간단한 손동작(가위, 바위, 보)을 인식하였다.

  • PDF

장갑 설계 적용을 위한 손동작에 따른 손체표의 길이변화 분석 (Analysis of Changes in Hand Length Dimensions by Hand Motion for Glove Design)

  • 권오채;선미선;정기효;이민정;연수민;유희천;김희은
    • 대한인간공학회지
    • /
    • 제24권4호
    • /
    • pp.1-5
    • /
    • 2005
  • A glove design which reflects the changes in hand surface by hand motion can reduce the undesirable effects of use of gloves on hand performance. The present study examined changes in hand length dimensions due to hand motion and identified significant factors affecting the length changes. Recruiting 120 males and females in their 20s and 30s having various hand lengths, this study measured 10 hand length dimensions, defined at 2 hand areas(phalangeal and metacarpal areas) for 5 digits, when the hand is stretched and in fist, and then calculated the percentage of length increase for each dimension. ANOVA and simple-effect analyses showed the length change percentages were mainly different depending on digit and hand area: 111-127% at the phalangeal area and 112-116% at the metacarpal area. The length change percentages of the index, middle, ring, and little fingers in the phalangeal area ascended in order and showed a high correlation(r = 0.94)with the ranges of motion of the fingers.

적외선 카메라를 이용한 에어 인터페이스 시스템(AIS) 연구 (A Study on Air Interface System (AIS) Using Infrared Ray (IR) Camera)

  • 김효성;정현기;김병규
    • 정보처리학회논문지B
    • /
    • 제18B권3호
    • /
    • pp.109-116
    • /
    • 2011
  • 본 논문에서는 기계적인 조작 장치 없이 손동작만으로 컴퓨터를 조작할 수 있는 차세대 인터페이스인 에어 인터페이스를 구현하였다. 에어 인터페이스 시스템 구현을 위해 먼저 적외선의 전반사 원리를 이용하였으며, 이후 획득된 적외선 영상에서 손 영역을 분할한다. 매 프레임에서 분할된 손 영역은 이벤트 처리를 위한 손동작 인식부의 입력으로 사용되고, 최종적으로 개별 제어 이벤트에 맵핑된 손동작 인식을 통하여 일반적인 제어를 수행하게 된다. 본 연구에서는 손영역 검출과 추적, 손동작 인식과정을 위해 구현되어진 영상처리 및 인식 기법들이 소개되며, 개발된 에어 인터페이스 시스템은 길거리 광고, 프레젠테이션, 키오스크 등의 그 활용성이 매우 클 것으로 기대된다.