• Title/Summary/Keyword: hand kinematics

Search Result 64, Processing Time 0.032 seconds

The Kinematic Analysis of the Upper Extremity during Backhand Stroke in Squash (스쿼시 백핸드 드라이브 동작시 상지 분절의 운동학적 변인 분석)

  • An, Yong-Hwan;Ryu, Ji-Seon;Ryu, Ho-Young;Soo, Jae-Moo;Lim, Young-Tae
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.2
    • /
    • pp.145-156
    • /
    • 2007
  • The purposes of this study were to investigate kinematic parameters of racket head and upper extremities during squash back hand stroke and to provide quantitative data to the players. Five Korean elite male players were used as subjects in this study. To find out the swing motion of the players, the land-markers were attached to the segments of upper limb and 3-D motion analysis was performed. Orientation angles were also computed for angular movement of each segment. The results were as follows. 1) the average time of the back hand swing (downswing + follow-through) was 0.39s (0.24 s + 0.15 s). 2) for each event, the average racket velocity at impact was 11.17m/s and the velocity at the end of swing was 8.03m/s, which was the fastest swing speed after impact. Also, for each phase, 5.10m/s was found in down swing but 7.68m/s was found in follow-through. Racket swing speed was fastest after the impact but the swing speed was reduced in the follow-through phase. 3) in records of average of joints angle, shoulder angle was defined as the relative angle to the body. 1.04rad was found at end of back swing, 1.75rad at impact and it changes to 2.35 rad at the end of swing. Elbow angle was defined as the relative angle of forearm to upper arm. 1.73rad was found at top of backswing, 2.79rad at impact, and the angle was changed to 2.55rad at end of swing. Wrist angle was defined as the relative angle of hand to forearm. 2.48rad was found at top of backswing, 2.86rad at impact, and the angle changes to 1.96rad at end of swing. As a result, if the ball is to fly in the fastest speed, the body has to move in the order of trunk, shoulder, elbow and wrist (from proximal segment to distal segment). Thus, the flexibility of the wrist can be very important factor to increase ball speed as the last action of strong impact. In conclusion, the movement in order of the shoulder, elbow and the wrist decided the racket head speed and the standard deviations were increased as the motion was transferred from proximal to the distal segment due to the personal difference of swing arc. In particular, the use of wrist (snap) may change the output dramatically. Therefore, it was concluded that the flexible wrist movement in squash was very important factor to determine the direction and spin of the ball.

Development of Collaborative Robot Control Training Medium to Improve Worker Safety and Work Convenience Using Image Processing and Machine Learning-Based Hand Signal Recognition (작업자의 안전과 작업 편리성 향상을 위한 영상처리 및 기계학습 기반 수신호 인식 협동로봇 제어 교육 매체 개발)

  • Jin-heork Jung;Hun Jeong;Gyeong-geun Park;Gi-ju Lee;Hee-seok Park;Chae-hun An
    • Journal of Practical Engineering Education
    • /
    • v.14 no.3
    • /
    • pp.543-553
    • /
    • 2022
  • A collaborative robot(Cobot) is one of the production systems presented in the 4th industrial revolution and are systems that can maximize efficiency by combining the exquisite hand skills of workers and the ability of simple repetitive tasks of robots. Also, research on the development of an efficient interface method between the worker and the robot is continuously progressing along with the solution to the safety problem arising from the sharing of the workspace. In this study, a method for controlling the robot by recognizing the worker's hand signal was presented to enhance the convenience and concentration of the worker, and the safety of the worker was secured by introducing the concept of a safety zone. Various technologies such as robot control, PLC, image processing, machine learning, and ROS were used to implement this. In addition, the roles and interface methods of the proposed technologies were defined and presented for using educational media. Students can build and adjust the educational media system by linking the introduced various technologies. Therefore, there is an excellent advantage in recognizing the necessity of the technology required in the field and inducing in-depth learning about it. In addition, presenting a problem and then seeking a way to solve it on their own can lead to self-directed learning. Through this, students can learn key technologies of the 4th industrial revolution and improve their ability to solve various problems.

Hand Held the distance measurement of platform on GPS (GPS기반 Hand Held Type 거리 측정기)

  • 박지훈;김영길
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.864-867
    • /
    • 2003
  • GPS (Global Positioning System) made by the Department of Defense in U.S.A is positioning system to use satellite and initially it has been used only for the military forces but open to civilian in about 1987. This system has widely been used for not only surveying land, but also car navigation on the street and means to build up the data of the GIS. With GPS, recently our country is accelerating to make imbeded system and also the study on imbeded system is well under way. For example, Car navigation and the construction of the Seokang bridge between Willson Arch at Han river by using DGPS were evaluated as successful model to lead accurate location with the precision of the cm. The examples of the project performance with GPS has gradually been extended to the each department organization of the local and central government. for the example, It is true that BIS(Bus Information System) is widely spreading out. In addition, the study on the Distribution Maintenance System is expected to be well in progress to take advantage of GPS based on the data base of the NGIS(National Geography Institute System) of the NGI(National Geography Institute). This paper shows that we embodied not only the large imbeded system for car and finding the location in Korean Land Corporation but also the protype of the kinematics Wrist Held which is easily portable to pedestrian, climber and marathon runner.

  • PDF

A Systematic Review of the Bimanual Intensive Training to Improve Bilateral Coordination for Children With Hemiplegic Cerebral Palsy (편측 뇌성마비 아동(hemiplegic cerebral palsy)의 양손 협응 향상을 위한 집중적 양손활동훈련에 관한 체계적 고찰)

  • Byun, Eun-Jin
    • Therapeutic Science for Rehabilitation
    • /
    • v.4 no.1
    • /
    • pp.7-17
    • /
    • 2015
  • Objective : To investigate the current researches which identify the improvement of bilateral coordination skill of children with hemiplegic cerebral palsy after bimanual intensive training. Methods : We systematically examined papers published in journals from 2004 to 2014, using RISS, Pubmed. Total 6 studies were included in the analyses. Result : All of the selected 6 studies were foreign papers, and the Pedro score was 5 or more. Among various interventions, modified CIMT designs were the most. The primary outcome measure tools are AHA and JTTHF for evaluating bilateral coordination and hand functions, and QUEST, ABILHAND-Kids, COPM, GAS, PEDI, 3-D movement kinematics were used for evaluating various aspects of effectiveness of interventions. Conclusion : Through this systematic review, it is identified that bilateral intensive training provides positive effects to not only hand functions but also bilateral coordination. Furthermore, it also provided supports to participate in ADL requiring bilateral coordination. These results will provides evidence concerning the effectiveness of BIT for children with hemiplegic cerebral palsy.

Optical Long-slit Spectroscopy of Parsec-scale Jets from DG Tauri

  • Oh, Heeyoung;Pyo, Tae-Soo;Yuk, In-Soo;Park, Byeong-Gon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.69.1-69.1
    • /
    • 2015
  • Classical T Tauri star DG Tau is suggested as the driving source of parsec-scale jet which expands up to 650" (0.4 pc). To investigate the kinematics and physical properties of the jet, we have obtained the optical emission lines of $H{\alpha}$, [O I] ${\lambda}{\lambda}$6300, 6363, [N II] ${\lambda}{\lambda}$6548,6584, and [S II] ${\lambda}{\lambda}$6716, 6731 from HH 158 ad HH 702. The radial velocity of HH 158 is in the range of -50 to $-250km\;s^{-1}$. For HH 702, located at 650" from the source, it shows ~ $-80km\;s^{-1}$. In HH 158, the electron density ($n_e$) close to the star is ${\sim}10^4cm^{-3}$ and it decreases to ${\sim}10^2cm^{-3}$ at 14" away from the star. Electron temperature ($T_e$) is decreasing from >15,000 K to ~5,000 K with distance. Ionization fraction ($x_e$) is increasing from almost zero to > 0.4 along the distance. In HH 702, the values of $n_e$, $T_e$, and $x_e$ are similar to those estimated at 14" from source, where knot C of HH 158 is located. This may imply that the physical properties of the knot could persist through such a long distance in the space, and the gas could be re-excited by the shock during propagation of the jet. On the other hand, we cannot avoid the possibility that HH 702 is driven by another source rather than DG Tau because HH 158 and HH 702 show somewhat large difference in their inclination angles (${\Delta}i=21-35^{\circ}$).

  • PDF

The Examination of Reliability of Lower Limb Joint Angles with Free Software ImageJ

  • Kim, Heung Youl
    • Journal of the Ergonomics Society of Korea
    • /
    • v.34 no.6
    • /
    • pp.583-595
    • /
    • 2015
  • Objective: The purpose of this study was to determine the reliability of lower limb joint angles computed with the software ImageJ during jumping movements. Background: Kinematics is the study of bodies in motion without regard to the forces or torques that may produce the motion. The most common method for collecting motion data uses an imaging and motion-caption system to record the 2D or 3D coordinates of markers attached to a moving object, followed by manual or automatic digitizing software. Above all, passive optical motion capture systems (e.g. Vicon system) have been regarded as the gold standards for collecting motion data. On the other hand, ImageJ is used widely for an image analysis as free software, and can collect the 2D coordinates of markers. Although much research has been carried out into the utilizations of the ImageJ software, little is known about their reliability. Method: Seven healthy female students participated as the subject in this study. Seventeen reflective markers were attached on the right and left lower limbs to measure two and three-dimensional joint angular motions. Jump performance was recorded by ten-vicon camera systems (250Hz) and one digital video camera (240Hz). The joint angles of the ankle and knee joints were calculated using 2D (ImageJ) and 3D (Vicon-MX) motion data, respectively. Results: Pearson's correlation coefficients between the two methods were calculated, and significance tests were conducted (${\alpha}=1%$). Correlation coefficients between the two were over 0.98. In Vicon-MX and ImageJ, there is no systematic error by examination of the validity using the Bland-Altman method, and all data are in the 95% limits of agreement. Conclusion: In this study, correlation coefficients are generally high, and the regression line is near the identical line. Therefore, it is considered that motion analysis using ImageJ is a useful tool for evaluation of human movements in various research areas. Application: This result can be utilized as a practical tool to analyze human performance in various fields.

Enhanced solid element for modelling of reinforced concrete structures with bond-slip

  • Dominguez, Norberto;Fernandez, Marco Aurelio;Ibrahimbegovic, Adnan
    • Computers and Concrete
    • /
    • v.7 no.4
    • /
    • pp.347-364
    • /
    • 2010
  • Since its invention in the $19^{th}$ century, Reinforced Concrete (RC) has been widely used in the construction of a lot of different structures, as buildings, bridges, nuclear central plants, or even ships. The details of the mechanical response for this kind of structures depends directly upon the material behavior of each component: concrete and steel, as well as their interaction through the bond-slip, which makes a rigorous engineering analysis of RC structures quite complicated. Consequently, the practical calculation of RC structures is done by adopting a lot of simplifications and hypotheses validated in the elastic range. Nevertheless, as soon as any RC structural element is working in the inelastic range, it is possible to obtain the numerical prediction of its realistic behavior only through the use of non linear analysis. The aim of this work is to develop a new kind of Finite Element: the "Enhanced Solid Element (ESE)" which takes into account the complex composition of reinforced concrete, being able to handle each dissipative material behavior and their different deformations, and on the other hand, conserving a simplified shape for engineering applications. Based on the recent XFEM developments, we introduce the concept of nodal enrichment to represent kinematics of steel rebars as well as bonding. This enrichment allows to reproduce the strain incompatibility between concrete and steel that occurs because of the bond degradation and slip. This formulation was tested with a couple of simple examples and compared to the results obtained from other standard formulations.

Effects of Prosthetic Mass Distribution on Musculoskeletal System during Amputee Gait (의지 보행시 의지 무게 분포가 근골격계에 미치는 영향)

  • Bae, Tae-Soo;Choi, Hwan;Kim, Shin-Ki;Mun, Mu-Seong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.8 s.197
    • /
    • pp.130-137
    • /
    • 2007
  • The optimized prosthetic mass distribution was a controversial problem in the previous studies because they are not supported by empirical evidence. The purpose of the present study was to evaluate the effect of prosthetic mass properties by modeling musculoskeletal system, based on the gait analysis data from two above-knee amputees. The joint torque at hip joint was calculated using inverse dynamic analysis as the mass was changed in knee and foot prosthetic components with the same joint kinematics. The results showed that the peak flexion and abduction torque at the hip joint were 5 Nm and 15 Nm when the mass of the knee component was increased, greater than the peak flexion and abduction torque of the control group at the hip joint, respectively. On the other hand, when the mass of the foot component was increased, the peak flexion and abduction torque at the hip joint were 20 Nm and 15 Nm, greater than the peak flexion and abduction torque of the control, respectively. The hip flexion torque was 4.71-fold greater and 7.92-fold greater than the hip abduction torque for the knee mass increase and the foot mass increase on the average, respectively. Therefore, we could conclude that the effect of foot mass increase was more sensitive than that of knee mass increase for the hip flexion torque. On the contrary, the mass properties of the knee and foot components were not sensitive for the hip abduction torque. In addition, optimized prosthetic mass and appropriate mass distributions were needed to promote efficiency of rehabilitation therapy with consideration of musculoskeletal systems of amputees.

Kinematical Analysis of Fastball and Longtoss during Baseball Throwing (투구시 속구와 멀리던지기 동작의 운동학적 비교분석)

  • Woo, Byung-Hoon;Jung, Yun-Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.3
    • /
    • pp.425-433
    • /
    • 2009
  • The purpose of this study was to investigate relation between fastball motion and longtoss motion, and the kinematical analysis using APAS(Ariel Performance Analysis System). Eight people(age: $21.2{\pm}3.6years$, height: $177.1{\pm}3.1cm$, weight $68.6{\pm}2.5kg$) participated in the experiment. Followings are the conclusion. In displacement of fore-aft on COG(Center of Gravity), fastball motion moved more forward than longtoss motion. In displacement of vertical on COG(Center of Gravity), fastball motion was lower than longtoss motion In velocity of right hand, greater release velocity was measured for fastball motion than for longtoss motion. In displacement of elbow and shoulder joint, more extended displacement was exhibited in fastball motion than longtoss motion. In displacement of trunk tilt, fastball motion showed foreward tilt, longtoss motion showed backward tilt. In stride, fastball showed longer than longtoss.

A Study on the Development of iGPS 3D Probe for RDS for the Precision Measurement of TCP (RDS(Robotic Drilling System)용 TCP 정밀계측을 위한 iGPS 3D Probe 개발에 관한 연구)

  • Kim, Tae-Hwa;Moon, Sung-Ho;Kang, Seong-Ho;Kwon, Soon-Jae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.130-138
    • /
    • 2012
  • There are increasing demands from the industry for intelligent robot-calibration solutions, which can be tightly integrated to the manufacturing process. A proposed solution can simplify conventional robot-calibration and teaching methods without tedious procedures and lengthy training time. iGPS(Indoor GPS) system is a laser based real-time dynamic tracking/measurement system. The key element is acquiring and reporting three-dimensional(3D) information, which can be accomplished as an integrated system or as manual contact based measurements by a user. A 3D probe is introduced as the user holds the probe in his hand and moves the probe tip over the object. The X, Y, and Z coordinates of the probe tip are measured in real-time with high accuracy. In this paper, a new approach of robot-calibration and teaching system is introduced by implementing a 3D measurement system for measuring and tracking an object with motions in up to six degrees of freedom. The general concept and kinematics of the metrology system as well as the derivations of an error budget for the general device are described. Several experimental results of geometry and its related error identification for an easy compensation / teaching method on an industrial robot will also be included.