• Title/Summary/Keyword: halophilic bacteria

Search Result 72, Processing Time 0.023 seconds

Isolation of Plasmids from the Moderately Halophilic Bacteria (Moderate 호염성 세균의 Plasmid 유전자 분리)

  • HONG Yong-Ki
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.18 no.6
    • /
    • pp.557-562
    • /
    • 1985
  • Moderately halophilic bacteria were collected from solar salt with Larsen medium containing $10\%$ NaCl. A total of 56 strains were isolated and tested for the presence of plasmid DNA by agarose gel electrophoresis. Twelve isolates ($21\%$) carried at least one kind of plasmid. Six different isolates among them were selected to study the molecular weight of plasmids and the morphological and physiological characters. Vibrio sp. 14, Alcaligenes sp. 63, Pseudomonas sp. 11, Flavobacterium sp. 38, Bacillus sp. 16, and Alcaligenes sp. 52 carried at least one plasmid of about 7.2 kbp, 6.4 kbp, 6.85 kbp, 8.5 kbp, 8.75 kbp, and 6.8 kbp respectively.

  • PDF

Characteristic of Carotenoid Component from Halophilic Bacteria, Haloarcular sp. EH-1 (호염세균 Haloarcular sp. EH-1으로부터 추출한 카로테노이드 색소의 특성)

  • 정영기;최병대;강석중;정성훈;이용규;김해윤;정명주
    • KSBB Journal
    • /
    • v.15 no.6
    • /
    • pp.673-676
    • /
    • 2000
  • In order to identification of carotenoid pigments of Haloarcular sp. EH-1 as a food for fish were analyzed. The content of carotenoids cultured in 3 L and 5 L bioreactor were 83.1 and 82.7 mg%, respectively. Identification of each carotenoid was achieved by means of co-TLC and co-HPLC with authentic specimens, spectroscopic and instrumental analyses, and chemical treatments as usual. The main components identified were ${\beta}$-carotene(8.1%), 3-hydroxyechinenone(42.0%) and astaxanthin(25.0%).

  • PDF

Effect of Chloride Ion-reducing Bacteria on the Chloride ion Concentration in Cement Mortars (염소이온 저감능 박테리아가 모르타르의 염소이온 농도에 미치는 영향)

  • Hwang, Ji-Won;Yoon, Hyun-Sub;Yang, Keun-Hyeok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.49-50
    • /
    • 2022
  • This study examined the potential of halophilic bacteria in reducing the chloride ion concentration within the cement mortars exposed to chloride attack. As a result of the experiment, the compressive strength of mortar with Halomonas venusta showed an equivalent performance to that of counterpart mortars without bacteria. Also, the chloride ion concentration measured in mortars including Halomonas Venusta was 71% lower than that of the counterpart mortars without bacteria.

  • PDF

Prokaryotic Communities of Halophilic Methylotrophs Enriched from a Solar Saltern (염전으로부터 농화배양된 호염 메틸영양미생물 군집의 특성)

  • Kim, Jong-Geol;Park, Soo-Je;Rhee, Sung-Keun
    • Korean Journal of Microbiology
    • /
    • v.46 no.3
    • /
    • pp.286-290
    • /
    • 2010
  • C-1 compounds are observed in anaerobic sediment of high salt environments. Thus, surface sediments and waters from these environments are therefore potential habitats for aerobic methylotrophic microorganisms. The soil samples collected from saltern and tidal flat as inoculums and methanol as carbon and energy source was supplied. After subculture depending on the salt concentration, methanol oxidizing bacteria growth condition investigated, the results of methanol oxidizing bacteria can grow in salt conditions, and the maximum concentration was 20%. Analysis based on denaturing gradient gel electrophoresis of 16S rRNA genes indicates that Methelyophaga-like bacteria were dominants of methylotrophs in the enrichment culture. Quantitative PCR showed that archaeal cells were about 1-10% of bacterial cells. Additionally archaea were assumed not to be involved in methanol oxidation since bacterial antibiotics completely blocked the methanol oxidation. Our results suggest that Methelyophaga-like bacteria could be involved in C-1 compounds oxidation in hypersaline environments although those activities are sensitive to salinity above 20%.

Microscopy of Microbial Gas Vesicles

  • Park, Junhyung;Kim, Ki Woo
    • Applied Microscopy
    • /
    • v.47 no.3
    • /
    • pp.165-170
    • /
    • 2017
  • Gas vesicles are intracellular gas-filled protein-shelled nanocompartments. The structures are spindle or cylinder-shaped, and typically $0.1{\sim}2{\mu}m$ in length and 45~250 nm in width. A variety of prokaryotes including photosynthetic bacteria and halophilic archaea form gas vesicles in their cytoplasm. Gas vesicles provide cell buoyancy as flotation devices in aqueous habitats. They are used as nanoscale molecular reporters for ultrasound imaging for biomedical purposes. The structures in halophilic archaea are poorly resolved due to the low signal-to-noise ratio from the high salt concentration in the medium. Such a limitation can be overcome using focused ion beam-thinning or inelastically scattered electrons. As the concentric bodies (~200 nm in diameter) in fungi possess gas-filled cores, it is possible that the concept of gas vesicles could be applied to eukaryotic microbes beyond prokaryotes.

Isolation of Bacteriophage from Haloarcular sp, EH-1 (Haloarcular sp. EH-1에 의한 bacteriophage의 분리)

  • 정명주
    • Journal of Life Science
    • /
    • v.13 no.4
    • /
    • pp.505-510
    • /
    • 2003
  • The extremely halophilic archaebacteriurn Haloarcular sp. EH-1 was isolated from solar salts. Halophages found in Haloarcular sp. EH-1 were isolated from fermented anchovy sauce. Halophages were isolated from fermented anchovy sauce using Haloarcular sp. EH-1 as a host bacterium. The isolated halophage produced 0.5∼l.0 mm in diameter clear plaques. The halophage consists of an symmetrical head, measuring 68 nm in diameter, and a contractile tail, 100 nm long and base plates were observed. Total size of phage DNA genome obtained 20 Kbp and its sequence homology was 52.87% with H. Salinarium.

Isolation and characterization of acid-resistanct and halophilic bacteria using cultivation technique in Jeju island (배양기법을 활용한 제주도내 내산 및 호염성 미생물의 분리 및 특성 분석)

  • Han, Bit;Kim, Minji;Ryu, Dajung;Lee, Ki-Eun;Lee, Byoung-Hee;Lee, Eun-Young;Park, Soo-Je
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.248-257
    • /
    • 2019
  • In this study, we isolated about 70 bacterial strains from terrestrial and marine environments in Jeju island, and finally, total 21 strains were obtained based on the 16S ribosomal RNA gene sequence analysis. These isolated strains were classified into 16 genera of 5 classes and were identified as an unrecorded species in the Republic of Korea. As a result of the substrate utilization and capability for polymer degradation, the physiological phenotypes for acid resistance and halophilic bacteria were observed to be distinct from each other, except for some acid resistance strains. This study might provide basic information on utilization for indigenous microorganisms.

Application of Alkaliphilic Biofilm-Forming Bacteria to Improve Compressive Strength of Cement-Sand Mortar

  • Park, Sung-Jin;Chun, Woo-Young;Kim, Wha-Jung;Ghim, Sa-Youl
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.3
    • /
    • pp.385-389
    • /
    • 2012
  • The application of microorganisms in the field of construction material is rapidly increasing worldwide; however, almost all studies that were investigated were bacterial sources with mineral-producing activity and not with organic substances. The difference in the efficiency of using bacteria as an organic agent is that it could improve the durability of cement material. This study aimed to assess the use of biofilm-forming microorganisms as binding agents to increase the compressive strength of cement-sand material. We isolated 13 alkaliphilic biofilmforming bacteria (ABB) from a cement tetrapod block in the West Sea, Korea. Using 16S RNA sequence analysis, the ABB were partially identified as Bacillus algicola KNUC501 and Exiguobacterium marinum KNUC513. KNUC513 was selected for further study following analysis of pH and biofilm formation. Cement-sand mortar cubes containing KNUC513 exhibited greater compressive strength than mineral-forming bacteria (Sporosarcina pasteurii and Arthrobacter crystallopoietes KNUC403). To determine the biofilm effect, Dnase I was used to suppress the biofilm formation of KNUC513. Field emission scanning electron microscopy image revealed the direct involvement of organic-inorganic substance in cement-sand mortar.

Amylase Production from Haloarcular sp. EH-1 (고호염성 Haloarcular sp. EH-1으로 부터 amylase 생산)

  • 정명주
    • Journal of Life Science
    • /
    • v.12 no.5
    • /
    • pp.570-576
    • /
    • 2002
  • The extremely halophilic archaebacterium Haloarcular sp. EH-1 was isolated from solar salts. Amylae production from Halonrcular sp. EH-1 have been studied. The results obtained were as follows. The optimal medium composition for the production of amylase from Haloarcular sp. EH-1 were soluble starch 1.5%, yeast extract 1.0%, MgSO$_4$ 7h$_2$O 2.0%, KCI 0.1%, NaCl 25% (pH 7.5). The incubation temperature, aeration rate and agitation speed were 4$0^{\circ}C$, 100 $m\ell$ medium / 500 $m\ell$ shaking flask, and 110 rpm. The cell growth and enzymatic activity was highest at 9 days of incubation. So amylase production appeared to be a growth-related phenomenon.

The Membrane-Bound NADH:Ubiquinone Oxidoreductase in the Aerobic Respiratory Chain of Marine Bacterium Pseudomonas nautica

  • Lee, Young-Jae;Cho, Kyeung-Hee;Kim, Young-Jae
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.2
    • /
    • pp.225-229
    • /
    • 2003
  • Each oxidoreductase activity of the aerobic respiratory chain-linked NADH oxidase system in the marine bacterium Pseudomonas nautica was stimulated by monovalent cations including $Na^+,\;Li^+,\;and\;K^+$. In the presence of NADH or deamino-NADH as electron donors, $GH_2$ formation was approximately 1.3-fold higher in the presense of 0.08 M of $Na^+\;than\;K^+$, Whereas the other reductase activities were not significantly higher in $Na^+\;than\;K^+$. The optimal pH of NADH (or deamino-NADH):ubiquinone-1 oxidoreductase was 9.0 in the presence of 0.08 M NaCl. The activity of NADH (or deamino-NADH):ubiquinone-1 oxidoreductase was inhibited by about 33% with $60{\mu}M$ 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO). The activity of NADH (deamino-NADH): ubiquinone-1 oxidoreductase was inhibited by about 32 to 38% with $80{\mu}M$ rotenone, whereas the activity was highly resistant to capsaicin. On the other hand, electron transfer from NADH or deamino-NADH to ubiquinone-1 generated a membrane potential (${\Delta}{\psi}$) which was larger in the presence of $Na^+$ than that observed in the absence of $Na^+$. The ${\Delta}{\psi}$ was almost completely collapsed by $5{\mu}M$ carbonylcyanide m-chlorophenylhydrazone(CCCP), and approximately 50% inhibited by $100{\mu}M$ rotenone, or $60{\mu}M$ 2-heptyl-4-hydroxyquinoline (HQNO). Also, HQNO made the ${\Delta}{\psi}$ very unstable. The results suggest that the enzymatic and energetic properties of the NADH:ubiquinone oxidoreductase of P. nautica are quite different, compared with those of other marine halophilic bacteria.