Browse > Article
http://dx.doi.org/10.4014/jmb.1110.10009

Application of Alkaliphilic Biofilm-Forming Bacteria to Improve Compressive Strength of Cement-Sand Mortar  

Park, Sung-Jin (School of Life Sciences and Institute for Microorganisms, Kyungpook National University)
Chun, Woo-Young (School of Architecture and Architectural Engineering, Kyungpook National University)
Kim, Wha-Jung (School of Architecture and Architectural Engineering, Kyungpook National University)
Ghim, Sa-Youl (School of Life Sciences and Institute for Microorganisms, Kyungpook National University)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.3, 2012 , pp. 385-389 More about this Journal
Abstract
The application of microorganisms in the field of construction material is rapidly increasing worldwide; however, almost all studies that were investigated were bacterial sources with mineral-producing activity and not with organic substances. The difference in the efficiency of using bacteria as an organic agent is that it could improve the durability of cement material. This study aimed to assess the use of biofilm-forming microorganisms as binding agents to increase the compressive strength of cement-sand material. We isolated 13 alkaliphilic biofilmforming bacteria (ABB) from a cement tetrapod block in the West Sea, Korea. Using 16S RNA sequence analysis, the ABB were partially identified as Bacillus algicola KNUC501 and Exiguobacterium marinum KNUC513. KNUC513 was selected for further study following analysis of pH and biofilm formation. Cement-sand mortar cubes containing KNUC513 exhibited greater compressive strength than mineral-forming bacteria (Sporosarcina pasteurii and Arthrobacter crystallopoietes KNUC403). To determine the biofilm effect, Dnase I was used to suppress the biofilm formation of KNUC513. Field emission scanning electron microscopy image revealed the direct involvement of organic-inorganic substance in cement-sand mortar.
Keywords
Exoguobacterium marinum; biofilm formation; halophilic bacteria; cement-sand mortar; compressive strength;
Citations & Related Records
연도 인용수 순위
1 Park, S. J., N. Y. Lee, W. J. Kim, and S. Y. Ghim. 2010. Application of bacteria isolated from dok-do for improving compressive strength and crack remediation of cement-sand mortar. Kor. J. Microbiol. Biotechnol. 38: 216-212.
2 Ramachandran, S. K., V. Ramakrishnan, and S. S. Bang. 2001. Remediation of concrete using micro-organisms. ACI Mater. J. 98: 3-9.
3 Stepanovic, S., D. Vukovic, I. Dakic, B. Savic, and M. Svabic-Viahovic. 2000. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J. Microbiol. Methods 40: 175-179.   DOI   ScienceOn
4 Stocks-Fischer, S., J. K. Galinat, and S. S. Bang. 1999. Microbiological precipitation of $CaCO_3$. Soil Biol. Biochem. 31: 1563-1571.   DOI   ScienceOn
5 Tiano, P., L. Biagiotti, and G. Mastromei. 1999. Bacterial biomediated calcite precipitation for monumental stones conservation: Methods of evaluation. J. Microbiol. Methods 36: 139-145.   DOI   ScienceOn
6 Tiano, P., E. Cantisani, I. Sutherland, and J. M. Paget. 2006. Biomediated reinforcement of weathered calcareous stones. J. Cult. Herit. 7: 49-55.   DOI   ScienceOn
7 Whitchurch, C. B., T. Tolker-Nielsen, P. C. Ragas, and J. S. Mattick. 2002. Extracellular DNA required for bacterial biofilm formation. Science 295: 1487.   DOI   ScienceOn
8 Achal, V., A. Mukherjee, P. C. Basu, and M. S. Reddy. 2009. Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production. J. Ind. Microbiol. Biotechnol. 36: 981-988.   DOI   ScienceOn
9 American Public Health Association (APHA). 1989. Standard Methods for the Examination of Water and Wastewater, 17th Ed. American Public Health Association, Washington, DC.
10 Bang, S. S., J. K. Galinat, and V. Ramakrishnan. 2001. Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. Enzyme Microb. Technol. 28: 404-409.   DOI   ScienceOn
11 Burton, E., N. Yakandawala, K. Lovetri, and M. S. Madhyastha. 2007. A microplate spectrofluorometric assay for bacterial biofilms. J. Ind. Microbiol. Biotechnol. 34: 1-4.
12 Chiara, B., G. Alessandro, M. Giorgio, R. Mila, T. Elena, and P. Brunella. 2007. Bacillus subtilis gene cluster involved in calcium carbonate biomineralization. J. Bacteriol. 189: 228-235.   DOI   ScienceOn
13 De Muynck, W., D. Debrouwer, N. De Belie, and W. Verstraete. 2008. Bacterial carbonate precipitation improves the durability of cementitious materials. Cem. Concr. Res. 38: 1005-1014.   DOI   ScienceOn
14 De Muynck, W., D. Debrouwer, N. De Belie, and W. Verstraete. 2010. Microbial carbonate precipitation in construction materials: A review. Ecol. Eng. 36: 118-136.   DOI   ScienceOn
15 Douglas, S. and T. J. Beveridge. 1998. Mineral formation by bacteria in natural microbial communities. FEMS Microbiol. Ecol. 26: 79-88.   DOI   ScienceOn
16 Hammes, F., N. Boon, J. de Villiers, W. Verstraete, and S. D. Siciliano. 2003. Strain-specific ureolytic microbial calcium carbonate precipitation. Appl. Environ. Microbiol. 69: 4901-4909.   DOI   ScienceOn
17 Edmund, B. 2003. Biomineralization of unicellular organisms: an unusual membrane biochemistry for the production of inorganic nano- and microstructures. Angew. Chem. Int. Ed. 42: 614-641.   DOI   ScienceOn
18 Ghosh, P., S. Mandal, B. D. Chattopadhyay, and S. Pal. 2005. Use of microorganism to improve the strength of cement mortar. Cem. Concr. Res. 35: 1980-1983.   DOI   ScienceOn
19 Ghosh, S., M. Biswas, B. D. Chattopadhya, and S. Mandal. 2009. Microbial activity on the microstructure of bacteria modified mortar. Cem. Concr. Compos. 31: 93-98.   DOI   ScienceOn
20 Knorre, H. and W. Krumbein. 2000. Bacterial calcification, pp. 25-31. In R. E. Riding and S. M Awramik (eds.). Microbial Sediments. Springer-Verlag, Berlin, Germany.
21 Le Metayer-Levrel, G., S. Castanier, G. Orial, J.-F. Loubiere, and J.-P. Perthuisot. 1999. Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony. Sediment. Geol. 126: 25-34.   DOI   ScienceOn
22 Myszka, K. and K. Czaczyk. 2009. Characterization of adhesive exopolysaccharide (EPS) produced by Pseudomonas aeruginosa under starvation conditions. Curr. Microbiol. 58: 541-546.   DOI   ScienceOn
23 Park, S. J., Y. M. Park, W. Y. Chun, W. J. Kim, and S. Y. Ghim. 2010. Calcite-forming bacteria for compressive strength improvement in mortar. J. Microbiol. Biotechnol. 20: 782-788.