Prokaryotic Communities of Halophilic Methylotrophs Enriched from a Solar Saltern

염전으로부터 농화배양된 호염 메틸영양미생물 군집의 특성

  • Kim, Jong-Geol (Department of Microbiology, Chungbuk National University) ;
  • Park, Soo-Je (Department of Microbiology, Chungbuk National University) ;
  • Rhee, Sung-Keun (Department of Microbiology, Chungbuk National University)
  • Received : 2010.07.09
  • Accepted : 2010.09.03
  • Published : 2010.09.30

Abstract

C-1 compounds are observed in anaerobic sediment of high salt environments. Thus, surface sediments and waters from these environments are therefore potential habitats for aerobic methylotrophic microorganisms. The soil samples collected from saltern and tidal flat as inoculums and methanol as carbon and energy source was supplied. After subculture depending on the salt concentration, methanol oxidizing bacteria growth condition investigated, the results of methanol oxidizing bacteria can grow in salt conditions, and the maximum concentration was 20%. Analysis based on denaturing gradient gel electrophoresis of 16S rRNA genes indicates that Methelyophaga-like bacteria were dominants of methylotrophs in the enrichment culture. Quantitative PCR showed that archaeal cells were about 1-10% of bacterial cells. Additionally archaea were assumed not to be involved in methanol oxidation since bacterial antibiotics completely blocked the methanol oxidation. Our results suggest that Methelyophaga-like bacteria could be involved in C-1 compounds oxidation in hypersaline environments although those activities are sensitive to salinity above 20%.

C-1화합물은 고염분성 환경의 혐기적인 퇴적층에서 관찰되며, 이 퇴적층의 표면과 수면에는 호기성 메틸영양미생물의 잠재적인 서식지가 된다. 염전과 갯벌에서 채취한 토양 시료를 접종원으로 하여 메탄올을 탄소원과 에너지원으로 공급하고 염분농도에 따라 계대배양한 후 메탄올 산화 세균 성장 조건을 살펴 본 결과, 메탄올 산화 세균이 성장 할 수 있는 염분의 최대 농도는 20% 조건이었다. 변성 구배 젤 전기영동 (Denaturing gel gradient electrophoresis)을 이용하여 농화배양액 내 미생물 군집구조를 분석한 결과, 메탄올 산화 미생물인 Methylophaga 관련 세균이 우점하는 것으로 나타났다. 정량 PCR결과 고세균이 세균의 1-10%로 존재하는 것으로 나타났다. 세균용 항생제 실험결과, 메탄올 산화가 억제되어 고세균이 메탄올 산화에 관여하지 않는다는 것을 추정할 수 있었다. 이번 연구를 통해, 메틸영양세균이 고염분환경(염분 농도 20%까지)에서도 C-1 화합물을 산화할 수 있음을 확인 할 수 있었다.

Keywords

References

  1. Anthony, C. 1982. The biochemistry of methylotrophs. Academic Press, London, New York, N.Y., USA.
  2. Anton, J., E. Llobet-Brossa, F. Rodriguez-Valera, and R. Amann. 1999. Fluorescence in situ hybridization analysis of the prokaryotic community inhabiting crystallizer ponds. Environ. Microbiol. 1, 517-523. https://doi.org/10.1046/j.1462-2920.1999.00065.x
  3. Anton, J., A. Oren, S. Benlloch, F. Rodriguez-Valera, R. Amann, and R. Rossello-Mora. 2002. Salinibacter ruber gen. nov., sp. nov., a novel, extremely halophilic member of the bacteria from saltern crystallizer ponds. Int. J. Syst. Evol. Microbiol. 52, 485-491. https://doi.org/10.1099/00207713-52-2-485
  4. Anton, J., R. Rossello-Mora, F. Rodriguez-Valera, and R. Amann. 2000. Extremely halophilic bacteria in crystallizer ponds from solar salterns. Appl. Environ. Microbiol. 66, 3052-3057. https://doi.org/10.1128/AEM.66.7.3052-3057.2000
  5. de Zwart, J.M.M., P.N. Nelisse, and J.G. Kuenen. 1996. Isolation and characterization of Methylophaga sulfidovorans sp. nov.: an obligately methylotrophic, aerobic, dimethylsulfide oxidizing bacterium from a microbial mat. FEMS Microbiol. Ecol. 20, 261-270.
  6. DeLong, E.F. 1992. Archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA 89, 5685-5689. https://doi.org/10.1073/pnas.89.12.5685
  7. Doronina, N., T. Darmaeva, and Y. Trotsenko. 2003. Methylophaga natronica sp. nov., a new alkaliphilic and moderately halophilic, restricted-facultatively methylotrophic bacterium from soda lake of the Southern Transbaikal region. Syst. Appl. Microbiol. 26, 382-389. https://doi.org/10.1078/072320203322497419
  8. Doronina, N.V., T.D. Darmaeva, and Y.A. Trotsenko. 2003. Methylophaga alcalica sp. nov., a novel alkaliphilic and moderately halophilic, obligately methylotrophic bacterium from an East Mongolian saline soda lake. Int. J. Syst. Evol. Microbiol. 53, 223-229. https://doi.org/10.1099/ijs.0.02267-0
  9. Doronina, N.V., Y.A. Trotsenko, and T.P. Tourova. 2000. Methylarcula marina gen. nov., sp. nov. and Methylarcula terricola sp. nov.: novel aerobic, moderately halophilic, facultatively methylotrophic bacteria from coastal saline environments. Int. J. Syst. Evol. Microbiol. 50 Pt 5, 1849-1859. https://doi.org/10.1099/00207713-50-5-1849
  10. Gonchar, M.V. and M.M. Maidan. 2001. A new oxidase-peroxidase kit for ethanol assays in alcoholic beverages. Food Technol. Biotechnol. 39, 37-42.
  11. Heyer, J., U. Berger, M. Hardt, and P.F. Dunfield. 2005. Methylohalobius crimeensis gen. nov., sp. nov., a moderately halophilic, methanotrophic bacterium isolated from hypersaline lakes of Crimea. Int. J. Syst. Evol. Microbiol. 55, 1817-1826. https://doi.org/10.1099/ijs.0.63213-0
  12. Janvier, M., C. Frehel, F. Grimont, and F. Gasser. 1985. Methylophaga marina gen. nov., sp. nov. and Methylophaga thalassica sp. nov., marine methylotrophs. Int. J. Syst. Bacteriol. 35, 131-139. https://doi.org/10.1099/00207713-35-2-131
  13. Janvier, M. and P.A.D. Grimont. 1995. The genus Methylophaga, a new line of descent within phylogenetic branch $\gamma$ of proteobacteria. Res. Microbiol. 146, 543-550. https://doi.org/10.1016/0923-2508(96)80560-2
  14. Kumar, S., K. Tamura, and M. Nei. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 5, 150-163 https://doi.org/10.1093/bib/5.2.150
  15. Margesin, R. and F. Schinner. 2001. Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5, 73-83. https://doi.org/10.1007/s007920100184
  16. Oren, A. 2002. Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J. Ind. Microbiol. Biotechnol. 28, 56-63. https://doi.org/10.1038/sj/jim/7000176
  17. Oren, A. 1990. Estimation of the contribution of halobacteria to the bacterial biomass and activity in solar salterns by the use of bile salts. FEMS Microbiol. Ecol. 73, 41-48. https://doi.org/10.1111/j.1574-6968.1990.tb03923.x
  18. Oren, A. 1990. The use of protein synthesis inhibitors in the estimation of the contribution of halophilic archaebacteria to bacterial activity in hypersaline environments. FEMS Microbiol. Ecol. 73, 187-192. https://doi.org/10.1111/j.1574-6968.1990.tb03940.x
  19. Ovreas, L., L. Forney, F.L. Daae, and V. Torsvik. 1997. Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl. Environ. Microbiol. 63, 3367-3373.
  20. Park, S.J., C.H. Kang, and S.K. Rhee. 2006. Characterization of the microbial diversity in a Korean solar saltern by 16S rRNA gene analysis. J. Microbiol. Biotechnol. 16, 1640-1645.
  21. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-25.
  22. Sambrook, J. and D.W. Russell. 2001. Molecular cloning: a laboratory manual. Cold Spring Harbor, New York, N.Y., USA.
  23. Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin, and D.G. Higgins. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876-4882. https://doi.org/10.1093/nar/25.24.4876
  24. Urakami, T. and K. Komagata. 1987. Characterization of species of marine methylotrophs of the genus methylophaga. Int. J. Syst. Bacteriol. 37, 402-406. https://doi.org/10.1099/00207713-37-4-402
  25. Weisburg, W.G., S.M. Barns, D.A. Pelletier, and D.J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697-703. https://doi.org/10.1128/jb.173.2.697-703.1991
  26. Widdel, F. and F. Bak. 1992. in the prokaryotes. Springer-Verlag, New York, N.Y., USA.