• Title/Summary/Keyword: halophilic

Search Result 140, Processing Time 0.023 seconds

Characterization and phylogenetic analysis of halophilic bacteria isolated from rhizosphere soils of coastal plants in Dokdo islands (독도 해안식물로부터 분리된 호염성 세균들의 특성 및 계통학적 분석)

  • You, Young-Hyun;Park, Jong Myong;Lee, Myung-Chul;Kim, Jong-Guk
    • Korean Journal of Microbiology
    • /
    • v.51 no.1
    • /
    • pp.86-95
    • /
    • 2015
  • To study the halobacterial diversity at the rhizospheric soil of coastal plant native to Dokdo islands, several host plant were selected and its rhizospheric soil was sampled. Soil sample was diluted serially and pure isolation was done by sub-culture using marine agar media. 26 halophilic strains cultivable at the marine medium containig concentration of 9.0% sodium chloride were selected among total 161 isolates. Their partial 16S rRNA gene sequences extracted from genomic DNA were analyzed and partially identified. Furthermore, to identify their genetic relationship, phylogenetic tree was deduced. Total 26 strains were belongs to Firmicutes (30.8%), Gamma proteobacteria (53.8%), Bacteroidetes (7.7%), Alpha proteobacteria (7.7%), and Actinobacteria (7.7%). These results showed the specific difference from previous researches which has been reported the microbial flora of soil or sea water around the Dokdo islands. Furthermore, 4 among 26 halophilic strains grew at above 12.0% NaCl concentrated marine broth, and 2 strains Idiomarina abyssalis LM4H23 and Halomonas huangheensis AS4H13 grew at 15.0% concentration. These halophilic strains thought to overcoming the severe stress like high salt concentration or variation derived from Dokdo-specific climate and might have unknown, specific relationship with their host coastal plant native to Dokdo islands.

Microbial Changes of Salted and Fermented Shrimp by High Hydrostatic Pressure Treatment (초고압처리에 의한 새우젓의 미생물변화)

  • Mok, Chul-Kyoon;Song, Ki-Tae;Lee, Sang-Ki;Park, Jong-Hyun;Woo, Gun-Jo;Lim, Sang-Bin
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.349-355
    • /
    • 2000
  • This study was conducted to enhance the storage stability of fermented shrimp with different salt contents using a high hydrostatic pressure. The effects of the magnitude of pressure and treatment time on the microorganisms of the fermented shrimp were investigated. The highest microbial counts with respect to the salt levels were observed at 18% salt, showing $3.4{\times}10^5\;CFU/g$ for general bacteria, $6.4{\times}10^4\;CFU/g$ for halophilic bacteria, $4.2{\times}10^5\;CFU/g$ for yeast and $3.0{\times}10^4\;CFU/g$ for halophilic yeast. The degree of sterilization increased with the magnitude of pressure and treatment time, and the sterilization could be analyzed by the first order reaction kinetics. The sterilization rate constants $(k_p)$ of the halophilic bacteria was lower than that of general bacteria. The $log(k_p)$ increased linearly with pressure and the slope of the regression line of the halophilic bacteria was greater than that of general bacteria, indicating that the sterilization of the halophilic bacteria was more dependent on the pressure. High hydrostatic pressure treatment was an effective non-thermal sterilization method for the salted and fermented shrimp, and the optimum treatment condition was for 10 min at 6,500 atm.

  • PDF

Microscopy of Microbial Gas Vesicles

  • Park, Junhyung;Kim, Ki Woo
    • Applied Microscopy
    • /
    • v.47 no.3
    • /
    • pp.165-170
    • /
    • 2017
  • Gas vesicles are intracellular gas-filled protein-shelled nanocompartments. The structures are spindle or cylinder-shaped, and typically $0.1{\sim}2{\mu}m$ in length and 45~250 nm in width. A variety of prokaryotes including photosynthetic bacteria and halophilic archaea form gas vesicles in their cytoplasm. Gas vesicles provide cell buoyancy as flotation devices in aqueous habitats. They are used as nanoscale molecular reporters for ultrasound imaging for biomedical purposes. The structures in halophilic archaea are poorly resolved due to the low signal-to-noise ratio from the high salt concentration in the medium. Such a limitation can be overcome using focused ion beam-thinning or inelastically scattered electrons. As the concentric bodies (~200 nm in diameter) in fungi possess gas-filled cores, it is possible that the concept of gas vesicles could be applied to eukaryotic microbes beyond prokaryotes.

Isolation of Bacteriophage from Haloarcular sp, EH-1 (Haloarcular sp. EH-1에 의한 bacteriophage의 분리)

  • 정명주
    • Journal of Life Science
    • /
    • v.13 no.4
    • /
    • pp.505-510
    • /
    • 2003
  • The extremely halophilic archaebacteriurn Haloarcular sp. EH-1 was isolated from solar salts. Halophages found in Haloarcular sp. EH-1 were isolated from fermented anchovy sauce. Halophages were isolated from fermented anchovy sauce using Haloarcular sp. EH-1 as a host bacterium. The isolated halophage produced 0.5∼l.0 mm in diameter clear plaques. The halophage consists of an symmetrical head, measuring 68 nm in diameter, and a contractile tail, 100 nm long and base plates were observed. Total size of phage DNA genome obtained 20 Kbp and its sequence homology was 52.87% with H. Salinarium.

Halobacillus blutaparonensis sp. nov., a Moderately Halophilic Bacterium Isolated from Blutaparon portulacoides Roots in Brazil

  • Barbosa Deyvison Clacino;Bae Jin-Woo;Weid Irene Von Der;Vaisman Natalie;Nam Young-Do;Chang Ho-Won;Park Yong-Ha;Seldin Lucy
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.12
    • /
    • pp.1862-1867
    • /
    • 2006
  • A moderately halophilic, Gram-positive, spore-forming bacterium was isolated from the roots of Blutaparon portulacoides, a plant found in sandy soil parallel to the beach line in Restinga de Jurubatiba, Rio de Janeiro, Brazil. The strain, designated $M9^T$, was motile and strictly aerobic with rod-shaped cells. It grew in the absence of NaCl and up to 20% NaCl, and was able to hydrolyze casein and starch. Strain $M9^T$ had a cell-wall peptidoglycan based on L-Orn-D-Asp, the predominant menaquinone present was menaquinone-7 (MK-7), diaminopimelic acid was not found, and anteiso-$C_{15:0}$ and iso-$C_{15:0}$ were the major fatty acids. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain $M9^T$ belonged to the genus Halobacillus and exhibited 16S rRNA gene similarity levels of 97.8-99.4% with the type strains of the other nine Halobacillus species. The DNA-DNA relatedness of strain $M9^T$ with H. trueperi, the closest relative as regards 16S rRNA gene similarity, and H. locisalis was 21% and 18%, respectively. Therefore, on the basis of phenotypic, genotypic, and phylogenetic data, strain $M9^T$ (=ATCC BAA-$1217^T$, =CIP $108771^T$, =KCTC $3980^T$) should be placed in the genus Halobacillus as a member of a novel species, for which the name Halobacillus blutaparonensis sp. nov. is proposed.

Salts Requirement of Moderately Halophilic Bacterium, Kordia algicida gen. nov., sp. nov. (호염성세균, Kordia algicida gen. nov., sp. nov.의 염류요구특성)

  • Sohn Jae Hak
    • Korean Journal of Microbiology
    • /
    • v.41 no.2
    • /
    • pp.112-116
    • /
    • 2005
  • Moderately halophilic bacterium, Kordia algicida gen. nov., sp. novo was isolated from seawater of Masan Bay, Korea, during algal blooming caused by Skeletonema costatum. This bacterium was grown on the ZoBell 2216e medium supplied aged seawater, but not grown the medium supplied $3\%$ NaCl. This bacterium showed absolute requirements for mono and divalent cations such as $Na^+,\;Mg^{2+}\;and\;Ca^{2+}$, since no growth was observed in the medium, which is not supplemented with one of $Na^+,\;Mg^{2+}\;and\;Ca^{2+}$ ions. In kinetic studies for three kinds of cation, Km values of $Na^+,\;Ca^{2+}\;and\;Mg^{2+}$ were determined to 0.202 M, 0.089 mM, and 0.189 mM, respectively. Also, $V_{max}({\mu}max)$ was 0.442 h, 0.411 hand 0.316 h. The bacterial cells were quickly lysed in the condition limited by the cations. This result should be suggested that Kordia algicida originated from marine.

PspAG97A: A Halophilic α-Glucoside Hydrolase with Wide Substrate Specificity from Glycoside Hydrolase Family 97

  • Li, Wei;Fan, Han;He, Chao;Zhang, Xuecheng;Wang, Xiaotang;Yuan, Jing;Fang, Zemin;Fang, Wei;Xiao, Yazhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.11
    • /
    • pp.1933-1942
    • /
    • 2016
  • A novel ${\alpha}-glucoside$ hydrolase (named PspAG97A) from glycoside hydrolase family 97 (GH97) was cloned from the deep-sea bacterium Pseudoalteromonas sp. K8, which was screened from the sediment of Kongsfjorden. Sequence analysis showed that PspAG97A belonged to GH97, and shared 41% sequence identity with the characterized ${\alpha}-glucoside$ BtGH97a. PspAG97A possessed three key catalytically related glutamate residues. Mutation of the glutamate residues indicated that PspAG97A belonged to the inverting subfamily of GH97. PspAG97A showed significant reversibility against changes in salt concentration. It exhibited halophilic ability and improved thermostability in NaCl solution, with maximal activity at 1.0 M NaCl/KCl, and retained more than 80% activity at NaCl concentrations ranging from 0.8 to 2.0 M for over 50 h. Furthermore, PspAG97A hydrolyzed not only ${\alpha}-1,4-glucosidic$ linkage, but also ${\alpha}-1,6-$ and ${\alpha}-1,2-glucosidic$ linkages. Interestingly, PspAG97A possessed high catalytic efficiency for long-chain substrates with ${\alpha}-1,6-linkage$. These characteristics are clearly different from other known ${\alpha}-glucoside$ hydrolases in GH97, implying that PspAG97A is a unique ${\alpha}-glucoside$ hydrolase of GH97.

Isolation and Physiological Properties of a Moderately Halophilic Bacterium Listeria denitrificans HB-38 (호염성 제균 Listeria denitrificans HB-38 균주의 분리 및 생리적 성질)

  • HONG Yong Ki;SEU Jung Hwn
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.16 no.2
    • /
    • pp.68-74
    • /
    • 1983
  • A moderately halophilic bacterium, Listeria denitrificans HB-38, isolated from mud on the seashore in Sooyoung bay, Pusan, showed the requirement of $4\%$ sodium chloride for cell growth in a medium with salts typical of a marine environment, and showed that of $10\%$ in a medium with salts typical of a terrestrial environment. The optimum temperature and pH for growth were $40^{circ}C$ and pH 7.5 in the medium containing $10\%$ sodium chloride and ions typical of a terrestrial environment. Sodium chloride as a protoplast stabilizer gave more stability than sorbitol or sucrose, meanwhile the protoplast did not require higher concentration of stabilizer than that of E. coli protoplast. Succinic dehydrogenase of HB-38 had a halophilic property showing maximal activity in the presence of $9\%$ sodium chloride. The strain HB-38 did not harbor an extrach-romosomal DNA.

  • PDF

Genomic Analysis of the Extremely Halophilic Archaeon Halobacterium noricense CBA1132 Isolated from Solar Salt That Is an Essential Material for Fermented Foods

  • Lim, Seul Ki;Kim, Joon Yong;Song, Hye Seon;Kwon, Min-Sung;Lee, Jieun;Oh, Young Jun;Nam, Young-Do;Seo, Myung-Ji;Lee, Dong-Gi;Choi, Jong-Soon;Yoon, Changmann;Sohn, Eunju;Rahman, MD. Arif-Ur;Roh, Seong Woon;Choi, Hak-Jong
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.8
    • /
    • pp.1375-1382
    • /
    • 2016
  • The extremely halophilic archaeon Halobacterium noricense is a member of the genus Halobacterium. Strain CBA1132 (= KCCM 43183, JCM 31150) was isolated from solar salt. The genome of strain CBA1132 assembled with 4 contigs, including three rRNA genes, 44 tRNA genes, and 3,208 open reading frames. Strain CBA1132 had nine putative CRISPRs and the genome contained genes encoding metal resistance determinants: copper-translocating P-type ATPase (CtpA), arsenical pump-driving ATPase (ArsA), arsenate reductase (ArsC), and arsenical resistance operon repressor (ArsR). Strain CBA1132 was related to Halobacterium noricense, with 99.2% 16S rRNA gene sequence similarity. Based on the comparative genomic analysis, strain CBA1132 has distinctly evolved; moreover, essential genes related to nitrogen metabolism were only detected in the genome of strain CBA1132 among the reported genomes in the genus Halobacterium. This genome sequence of Halobacterium noricense CBA1132 may be of use in future molecular biological studies.

Isolation, Identification and Enzymatic Activity of Halotolerant and Halophilic Fungi from the Great Sebkha of Oran in Northwestern of Algeria

  • Chamekh, Rajaa;Deniel, Franck;Donot, Christelle;Jany, Jean-Luc;Nodet, Patrice;Belabid, Lakhder
    • Mycobiology
    • /
    • v.47 no.2
    • /
    • pp.230-241
    • /
    • 2019
  • The Great Sebkha of Oran is a closed depression located in northwestern of Algeria. Despite the ranking of this sebkha among the wetlands of global importance by Ramsar Convention in 2002, no studies on the fungal community in this area have been carried out. In our study, samples were collected from two different regions. The first region is characterized by halophilic vegetation and cereal crops and the second by a total absence of vegetation. The isolated strains were identified morphologically then by molecular analysis. The biotechnological interest of the strains was evaluated by testing their ability to grow at different concentration of NaCl and to produce extracellular enzymes (i.e., lipase, amylase, protease, and cellulase) on solid medium. The results showed that the soil of sebkha is alkaline, with the exception of the soil of cereal crops that is neutral, and extremely saline. In this work, the species Gymnoascus halophilus, Trichoderma gamsii, the two phytopathogenic fungi, Fusarium brachygibbosum and Penicillium allii, and the teleomorphic form of P. longicatenatum observed for the first time in this species, were isolated for the first time in Algeria. The halotolerance test revealed that the majority of the isolated are halotolerant. Wallemia sp. and two strains of G. halophilus are the only obligate halophilic strains. All strains are capable to secrete at least one of the four tested enzymes. The most interesting species presenting the highest enzymatic index were Aspergillus sp. strain A4, Chaetomium sp. strain H1, P. vinaceum, G. halophilus, Wallemia sp. and Ustilago cynodontis.