Salts Requirement of Moderately Halophilic Bacterium, Kordia algicida gen. nov., sp. nov.

호염성세균, Kordia algicida gen. nov., sp. nov.의 염류요구특성

  • Published : 2005.06.01

Abstract

Moderately halophilic bacterium, Kordia algicida gen. nov., sp. novo was isolated from seawater of Masan Bay, Korea, during algal blooming caused by Skeletonema costatum. This bacterium was grown on the ZoBell 2216e medium supplied aged seawater, but not grown the medium supplied $3\%$ NaCl. This bacterium showed absolute requirements for mono and divalent cations such as $Na^+,\;Mg^{2+}\;and\;Ca^{2+}$, since no growth was observed in the medium, which is not supplemented with one of $Na^+,\;Mg^{2+}\;and\;Ca^{2+}$ ions. In kinetic studies for three kinds of cation, Km values of $Na^+,\;Ca^{2+}\;and\;Mg^{2+}$ were determined to 0.202 M, 0.089 mM, and 0.189 mM, respectively. Also, $V_{max}({\mu}max)$ was 0.442 h, 0.411 hand 0.316 h. The bacterial cells were quickly lysed in the condition limited by the cations. This result should be suggested that Kordia algicida originated from marine.

호염성세균인 Kordia algicida gen. nov,, sp. nov.은 규조류인 Skeletonema costatum에 의한 적조발생동안 마산만의 표층수로부터 분리되었다. 본 균주는 숙성해수가 공급된 ZoBell 2216e 배지에서 성장이 가능하나 $3\%$ NaCl만이 공급된 동 배지에서는 성장하지 않았다. 13종의 주된 재수성분을 대상으로 한 염류 요구성 조사에서 $Na^+,\;Mg^{2+}$$Ca^{2+}$ 이온이 제한된 배지에서는 성장을 하지 않아, 성장을 위해 필수적으로 3조의 이온을 요구하였다. 3종의 이온을 대상으로 한 Kinetic 조사에서 $Na^+,\;Ca^{2+}$$Mg^{2+}$ 의 Km 간은 각각 0.202 M, 0.089 mM, and 0.189 mM로 결정되었으며 $V_{max}({\mu}max)$는 또한 0.442h, 0.411h 및 0.316h로 결정되었다. 현미경적 관찰에서 K. algicida는 각 이온들을 제한하였을 때 $2\~8$시간에 내에 빠른 사멸을 나타내었다. 이러한 결과로 Kordia algicida는 해양으로부터 유래된 전형적인 호염성세균임을 알 수 있었으며 해양유래 미생물의 분리 시 각별한 주의가 요구됨을 시사한다.

Keywords

References

  1.  이광우, 양한섭. 1998. 화학해양학. 청문각. p. 17
  2. Bowman, J.P., S.A. MaCammon, J.L. Brown, P.D. Nichols, and T.A. McMeekin. 1997. Psychroserpens burtonensis gen. nov., and Gelidibacter algens gen. nov., sp. nov., Psychrophilic bacteria isolated from Antartic Lacustrine and sea ice habitats. Int. J. Syst. Bacteriol. 47, 670-677 https://doi.org/10.1099/00207713-47-3-670
  3. Gow, J.A., R.A. MacLeod, M. Goodbody, D. Frank, and D. DeVoe L. 1981. Growth characteristics at low $Na^+$ concentration and the stability of the Na+ requirement of a marine bacterium. Can. J. Microbiol. 27, 350-357 https://doi.org/10.1139/m81-053
  4. Grobben, G.J., I. Chin-Joe, V.A. Kitzen, I.C. Boels, F. Boer, J. Sikkema, M.R. Smith, and J.A.M. De Bont. 1998. Enhancement of exopolysaccharide production by Lactobacillus delbrueckii sub sp. bulgaricus NCFB 2772 with a simplified defined medium. Appl. Environ. Microbiol. 64, 1333-1337
  5. Laddaga, R.A. and R.A. MacLeod. 1982. Factors affecting the lytic susceptibility of some marine and terrestrial bacteria. Can. J. Microbiol. 28, 414-424 https://doi.org/10.1139/m82-063
  6. MacLeod, R.A. 1968. On the role of inorganic ions in the physiology of marine bacteria, p. 95-126. In M.R. Droop and E.J.F. Wood (ed.), Advances in microbiology of the sea. vol. 1. Academic Press, Inc.(London), LTD., London
  7. Oh, S., K. Kogure, K. Ohwada, and U. Simidu. 1991. Correlation between possession of a respiration-dependent $Na^+$ pump and $Na^+$ requirement for growth of marine bacteria. Appl. Environ. Microbiol. 57, 1844-1846
  8. Rayman M.K. and R.A. MacLeod. 1975. Interaction of $Mg^{2+}$ with peptidoglycan and its relation to the prevention of lysis of a marine Pseudomonad. J. Bacteriol. 122, 650-659
  9. Sohn, J.H., J.H. Lee, H. Yi, J. Chun, K.S. Bae, T-Y. Ahn, and S-J. Kim. 2004. Kordia algicida gen. nov., sp. nov., an algicida bacterium isolated from red tide. Int J. Syst Evol Bacteriol. 54, 675-680 https://doi.org/10.1099/ijs.0.02689-0
  10.  Tokuda, H. and T. Unemoto. 1984. $Na^+$ is translocated at NADH: quinone oxidoreductase segment in the respiratory chain of Vibrio alginolyticus. J. Biol. Chem. 259, 7785-7790
  11.  Unemoto, T. and R.A. Macleod. 1975. Capacity of the outer membrane of a gram-positive marine bacterium in the presence of cations to prevent lysis by Triton X-100. J. Bacteriol. 121, 800-806
  12.  Zahran, H.H. 1997. Diversity, adaptation and activity of the bacterial flora in saline environments. Biol. Feril. Soils. 25, 211-223 https://doi.org/10.1007/s003740050306
  13.  Zimmerman, R. 1977. Estimation of bacterial number and biomass by epifluorescence microscopy and scanning electron microscopy, p. 103-120. In G. Rheinheimer(ed.), Microbial ecology of a brackish water environment. Springer-Verlag, Berlin
  14. Zobell, C.E. 1946. Marine microbiology. Chronica Botanica Co., Waltham. Mass