• 제목/요약/키워드: hair cell

검색결과 269건 처리시간 0.028초

우슬의 에탄올 추출물이 모발 성장에 미치는 영향 (Effect of ethanol extract from Achyranthis Radix on hair growth)

  • 이미자;최문열;김유진;김미려;유왕근
    • 대한본초학회지
    • /
    • 제36권4호
    • /
    • pp.1-7
    • /
    • 2021
  • Objective : As more and more people are interested in appearance in modern society, the increasing number of hair loss population can have an important impact on psychological and social problems such as depression and inappropriate interpersonal symptoms. Therefore, much research is being done on treatments for alopecia using herbal extracts with relatively few side effects. This study was investigated about the effect of Achyranthis Radix (AR) extract with ethanol solvent on hair growth. Methods : We determined the promoting efficacy of AR-ethanol extract compared with minoxidil (MNXD) on the growth of human hair dermal papilla cells (HDPCs). Cell viability was measured by MTT assay and cell proliferation was confirmed by cell cycle analysis from flow cytometry in HDPCs. Also, we monitored the safe concentration range through MTT assay. And protein expression of hair growth-related genes (insulin-like growth factor 1 (IGF-1), Wnt3a, Protein kinase B (Akt), Extracellular signal-regulated kinase (Erk)) was monitored by western blot. Results : On cell cycle analysis, the G2/M phase was higher than that of the DW group in AR ethanol extract group at 0.05 and 0.1 mg/㎖. All protein expression levels of HDPCs were increased in AR ethanol extract groups and the MNXD group, compared to the DW group, respectively. Conclusion : As mentioned above, AR extract increased cell proliferation and the protein expression of IGF-1, Wnt3a, Akt, Erk in HDPCs. These results suggest that AR ethanol extract has promoted hair growth and it might be potential hair growth supplement.

Radiation-induced Cochlea Hair Cell Death: Mechanisms and Protection

  • Tan, Pei-Xin;Du, Sha-Sha;Ren, Chen;Yao, Qi-Wei;Yuan, Ya-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권10호
    • /
    • pp.5631-5635
    • /
    • 2013
  • Cochlea hair cell death is regarded to be responsible for the radiation-induced sensorineural hearing loss (SNHL), which is one of the principal complications of radiotherapy (RT) for head and neck cancers. In this mini-review, we focus on the current progresses trying to unravel mechanisms of radiation-induced hair cell death and find out possible protection. P53, reactive oxygen species (ROS) and c-Jun N-terminal kinase (JNK) pathways have been proposed as pivotal in the processes leading to radiation hair cell death. Potential protectants, such as amifostine, N-acetylcysteine (NAC) and epicatechin (EC), are claimed to be effective at reducing radiation-inducedhair cell death. The RT dosage, selection and application of concurrent chemotherapy should be pre-examined in order to minimize the damage to cochlea hair cells.

In vivo and In vitro hair growth promotion effects of extract from Glycine soja Siebold et Zucc

  • Yang, Jae Chan;Kim, Bo Ae
    • Journal of Applied Biological Chemistry
    • /
    • 제59권2호
    • /
    • pp.137-143
    • /
    • 2016
  • Hair is a dermal adjunctive organ that protects the body from external physical and chemical stimuli; hair undergoes anagen, catagen, and telogen phases, with hair-loss occurring during the telogen phase. Alopecia is a condition wherein a person undergoes hair-loss far exceeding the normal amount, owing to diverse external factors. Wild beans are rich in isoflavone and amino acids known to prevent hair-loss; compared to cultivated beans, many wild bean species have higher protein content. This study aimed to develop a hair growth promoting solution, with superior hair growth promoting effects and fewer side effects, using naturally obtained Glycine soja Siebold et Zucc (GSSZ) extracts. Seven-week-old C57BL/6N male mice were classified into different experimental groups. Hair growth was observed in GSSZ-treated mice, and compared against that seen in 3 % minoxidil (MXD, positive control)-treated mice. Visual observations revealed a greater reduction in hair-loss in MXD and GSSZ application groups, compared to that in TXN group (hair loss induction using 1 % testosterone). Evaluation using an image analysis software revealed that compared to the positive control, TXN + GSSZ group showed the highest hair growth. TXN + MXD and control groups exhibited similar follicular cell growth, while the hair growth promotion patterns were similar in the negative control (normal), TXN + GSSZ, and TXN groups, as observed via histological analysis. GSSZ did not induce cytotoxicity (even at 2 mg/mL) in keratinocytes and dermal papilla cells; alternately, dermal papilla cell proliferation was activated in a (GSSZ) concentration-dependent manner. Therefore, the GSSZ extract promoted hair growth and increased hair growth-related cell activity, and could therefore be utilized in alopecia treatment.

Lgr5와 결합하는 신규 헵타펩타이드를 이용한 인체 모낭 세포의 활성과 모낭줄기세포 분화 유도 (Novel Heptapeptide Binds to the Lgr5 Induces Activation of Human Hair Follicle Cells and Differentiation of Human Hair Follicle Bulge Stem Cells)

  • 김민웅;이응지;길하나;정용지;김은미
    • 대한화장품학회지
    • /
    • 제49권1호
    • /
    • pp.75-85
    • /
    • 2023
  • 본 연구에서는 7 개의 아미노산으로 이루어진 헵타펩타이드의 Lgr5 binding에 따른 인체 모낭 구성 세포의 활성에 대한 영향을 확인하였다. 표면 플라즈몬 공명(surface plasmon resonance, SPR) 시스템을 이용하여 헵타펩타이드가 Lgr5에 결합하는 것을 확인하였다. 인체 모유두세포(human hair follicle dermal papilla cell, HHFDPC)에 헵타펩타이드를 처리한 결과, 농도 의존적인 세포 증식이 나타났으며 β-catenin의 세포 내핵 이동 및 하위 유전자인 LEF1, Cyclin-D1, c-Myc의 발현 증가가 관찰되었다. 그리고 세포 증식 기전 관련 인자인 Akt와 ERK의 인산화 수준이 증가되었으며, 성장인자인 hepatocyte growth factor (HGF), keratinocyte growth factor (KGF), vascular endothelial growth factor (VEGF) 발현이 유도되었다. 또한 인체 모모세포(human hair germinal matrix cell, HHGMC)의 분화 관련 전사 인자와 인체 외모근초세포(human hair outer root sheath cell, HHORSC)의 분화 표지 인자들도 헵타펩타이드 처리 시 높은 발현율을 보였다. 추가적으로 우리는 헵타펩타이드의 인체 모낭줄기세포(human hair follicle stem cell, HHFSC) 분화에 대한 영향을 조사하였다. 그 결과, HHFSC 표지인자들의 mRNA와 단백질 수준이 감소하였고 반면에 분화 표지인자들은 증가하였다. 상기의 결과들은 헵타펩타이드가 인체 모낭 구성 세포에서 Wnt/β-catenin 경로를 촉진시켜 증식 또는 분화를 유도할 수 있음을 보여준다. 이를 토대로 종합해 볼 때, 본 연구의 헵타펩타이드는 모발 성장을 유도하고 탈모 개선에 도움을 줄 수 있는 기능성 원료로 사용될 수 있을 것으로 보인다.

Human umbilical cord blood mesenchymal stem cells engineered to overexpress growth factors accelerate outcomes in hair growth

  • Bak, Dong Ho;Choi, Mi Ji;Kim, Soon Re;Lee, Byung Chul;Kim, Jae Min;Jeon, Eun Su;Oh, Wonil;Lim, Ee Seok;Park, Byung Cheol;Kim, Moo Joong;Na, Jungtae;Kim, Beom Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권5호
    • /
    • pp.555-566
    • /
    • 2018
  • Human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) are used in tissue repair and regeneration; however, the mechanisms involved are not well understood. We investigated the hair growth-promoting effects of hUCB-MSCs treatment to determine whether hUCB-MSCs enhance the promotion of hair growth. Furthermore, we attempted to identify the factors responsible for hair growth. The effects of hUCB-MSCs on hair growth were investigated in vivo, and hUCB-MSCs advanced anagen onset and hair follicle neogeneration. We found that hUCB-MSCs co-culture increased the viability and up-regulated hair induction-related proteins of human dermal papilla cells (hDPCs) in vitro. A growth factor antibody array revealed that secretory factors from hUCB-MSCs are related to hair growth. Insulin-like growth factor binding protein-1 (IGFBP-1) and vascular endothelial growth factor (VEGF) were increased in co-culture medium. Finally, we found that IGFBP-1, through the co-localization of an IGF-1 and IGFBP-1, had positive effects on cell viability; VEGF secretion; expression of alkaline phosphatase (ALP), CD133, and ${\beta}-catenin$; and formation of hDPCs 3D spheroids. Taken together, these data suggest that hUCB-MSCs promote hair growth via a paracrine mechanism.

의이인의 정유 분획물이 모유두 세포의 성장에 미치는 영향 (Effect of essential oil from Coicis Semen (ECS) on proliferation of human hair dermal papilla cells)

  • 김유진;서경혜;장귀영;정지욱;김미려
    • 대한본초학회지
    • /
    • 제36권3호
    • /
    • pp.47-53
    • /
    • 2021
  • Objectives : Currently, the alopecia is one of the most emotionally stressful syndromes in human life. Human hair dermal papilla cells (HDPCs) play an essential role in controlling hair growth and in regulating hair cycle. We performed MTT assay, cell cycle, and western blot to determine the effects of essential oil from Coicis Semen (ECS) on hair growth in HDPCs. Methods : We monitored cell proliferations by MTT assay in HDPCs. After setting up the safe and effective concentration range to be treated ECS, cell cycle analysis was performed using flow cytometry. Also, the protein expression of hair growth-related factors such as insulin like growth factor-1 (IGF-1), Wnt, extracellular signal-regulated kinase (ERK), serine/threonine-specific protein kinase (Akt) in HDPCs was determined by western blot. Results : As results, cell proliferation was increased in ECS group compared to dimethyl sulfoxide (DMSO) group and minoxidil (MNXD) group. Cell number of ECS group was more decrease in sub G1 phase than cell number of DMSO group. Also, cell number of ECS group increased compared to cell number of DMSO group in G1 phase. Protein expression of ECS group was higher than protein expression of DMSO group on related hair growth factors (IGF-1, Wnt, ERK, Akt). Conclusion : As mentioned above, ECS increased cell proliferation and the protein expression of IGF-1, Wnt, ERK, and Akt. These results suggest that ECS could be used as a potential material for the treatment of alopecia by increasing the proliferation of HDPCs.

검은콩, 밀, 쌀겨 추출물이 모발의 성장과 물리적 특성에 미치는 효과 (Experimental studies of Glycine max Merr. (black bean), Triticum aestivum L. (wheat) and Oryza sativa L. (rice bran) extracts on the effects of hair growth activity and physical properties)

  • 박혜윤;김수나;강병하;이존환
    • 한국한의학연구원논문집
    • /
    • 제16권3호
    • /
    • pp.167-173
    • /
    • 2010
  • Objects : Glycine max Merr. (black bean), Triticum aestivum L. (wheat) and Oryza sativa L. (rice bran) have been widely used for treatment of relaxion of smooth muscle, gastrointestinal hemorrhage and alopecia in Korean Traditional Medicine. In this research, we examined the effect of the extracts, obtained from EtOH extracts of 3 kinds of traditional plants, on hair growing activity of the DP6 and C3H10T1 cell and physical properties. Materials and Methods : On the basis of previous studies, three traditional plants were selected and we extracted them with ethanol. We evaluated their hairy dermal papillar cell proliferation activity and mouse mesenchymal stem cell in vitro model. Also, 3 herbal extracts were added to the normal shampoo formulation in ranges of 0.1% and we validated tensile properties and physical changes using aged hair. In this research, we compared the tensile strength, shine and color appearance between the hair (general formulation) and the hair after applying shampoo with natural extracts. To analyze the luster and color image, we use the SAMBA hardware and software made by Bossa Nova Technologies. Results : In the comparative test for tensile characteristic between the hair treated general formulation(control) and the hair applying special formulation including 3 kinds of extracts, tensile distance and energy of the latter are larger than control on average. The shine and color appearance were also increased after using shampoo including natural extracts(shine : 10.9%, color appearance: 24.12%). We observed the enhancement of hair growth activity in the DP6 and C3H10T1 cell. Especially black bean extracts had the most powerful effect in the dermal papillar cell proliferation. Conclusion : These experiments suggest that extracts of Glycine max Merr. (black bean), Triticum aestivum L. (wheat) and Oryza sativa L. (rice bran) stimulate the hair growth activity and can improve physical activities of aged hair. Shampoo product, which contains 3 kinds of natural extracts, would be used for the treatment for aged hair.

도라지 분획물의 항산화 및 탈모예방 효과 (Evaluation of Antioxidant Fractions and Hair Loss Prevention Effects of Platycodon grandiflorum)

  • 정민화
    • 생명과학회지
    • /
    • 제29권7호
    • /
    • pp.779-784
    • /
    • 2019
  • 도라지의 탈모예방 효과를 검증하기 위해 몇가지 용매를 이용하여 도라지 분획물을 준비하였다. 산화적 스트레스는 두피혈관을 좁게 하여 모근으로의 영양공급을 방해함으로써 탈모를 유발한다. 본 연구에 사용된 분획물인 BF와 WF는 DPPH 라디칼 소거능의 $IC_{50}$값이 각각 16.2 mg/ml와 121.8 mg/ml로, 모두 농도의존적으로 소거능이 증가하는 것으로 나타났다. 또한 ABTS 라디칼 소거능 실험결과에서도 BF와 WF 처리시 $IC_{50}$값이 각각 4.9 mg/ml와 39.8 mg/ml로 높은 항산화활성을 나타내었다. 또한 인간피부세포인 HaCaT cell 증식 실험결과, 24시간 BF와 WF 처리 시 각각 최대 31%($1{\mu}g/ml$)와 18%($1{\mu}g/ml$)로 HaCaT cell 증식을 촉진시키는 것으로 나타나 추출물이 피부재생효과가 있음을 증명하였다. 탈모의 원인중의 하나인 두피의 염증에 대한 분획물의 효능을 확인하고자, RAW264.7 cell을 이용하여 염증반응 생성물인 NO와 $PGE_2$ 생성정도를 관찰하였다. 그 결과, BF와 WF 각각 최대 88.5%($0.1{\mu}g/ml$)와 88.0%($50{\mu}g/ml$)까지 NO와 $PGE_2$ 생성을 저해하는 것으로 나타났다. 모낭을 구성하는 모유두세포인 HFDPC cell 증식 실험 결과, 4, 48, 72시간 처리 시 모두 HFDPC cell 증식을 농도의존적으로 증가시키는 것으로 나타났다. 이상의 결과를 토대로 본 연구에 사용된 도라지로부터 추출한 부탄올 분획물과 물 분획물이 탈모예방에 효과적이며, 그중에서도 특히 부탄올 분획물이 탈모예방제품의 유용한 천연재료로써의 가치가 있음을 증명하였다.

The Localization of Cytokeratin 19 and Vimentin in Sprague Dawley Albino Rat Skin Tissue

  • Kim, Tae Keun;Kim, Yong Joo;Min, Byoung Hoon;Kim, Soo Jin
    • Applied Microscopy
    • /
    • 제44권1호
    • /
    • pp.15-20
    • /
    • 2014
  • Cytokeratin 19 (CK19) expressed in epidermis of skin, bulge region of hair follicle, outermost layer of outer root sheath and proximal and distal to bulge. Vimentin is a fibrous protein that localized in cytoplasm of fibroblast and forms cytoskeleton to maintain shape of cell and nucleus. In this study, CK19 and vimentin in skin were confirmed with light, fluorescence and transmission electron microscope. As a result, CK19 was localized epidermis, hair follicles, outer root sheath and nucleus of Merkel's cell. However, vimentin was localized some epidermis, dermis, hypodermis and nucleus of Merkel's cell. The role of CK19 is self-renewal and homeostasis in skin. Also, hair follicle regeneration and hair growth is known to be related. It is supposed that required of structural proteins that make up cytoskeleton is increased. Thereby, expression of CK19 is increased. It is considered that vimentin localized in order to stabilize structure of cell and cytoskeleton of fibroblasts. Also, CK19 and vimentin present in nuclei of Merkel's cell, and to act as a fibrous protein that make up end of a nerve fiber present in Merkel's cell and paracrine function of Merkel's cell.

망고 잎 열수 추출물의 모유두 세포에서 탈모 관련 유전자 발현에 미치는 영향 연구 (Investigation on the effect of water extracts of Mangifera indica leaves on the hair loss-related genes in human dermal papilla cells)

  • 최영수;김은미;이성희;한효상;김기광
    • 대한본초학회지
    • /
    • 제36권3호
    • /
    • pp.39-46
    • /
    • 2021
  • Objectives : Mangifera indica leaves are well known for having a variety of benefits, including anti-inflammatory, anti-tumor, diabetic retinopathy and diabetic vasculosis. However, the effects of Mangifera indica leaves on hair loss inhibition have not been studied. In this study, we investigated to find out the activity of Mangifera indica leaves on hair loss. Methods : 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid(ABTS) analysis was performed to confirm the antioxidant efficacy of the water extract of Mangifera indica leaves (WEML). To examine the effect of WEML on cell viability in dermal papillar (DP) cells, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetra Zolium (MTS) analysis was performed. The changes in the mRNA expression level of the hair loss and hair growth-related genes in dermal papilla cells by WEML treatment were confirmed by quantitative RT-PCR. Results : In dermal papilla (DP) cells, ABTS analysis and MTS analysis of WEML showed antioxidant efficacy and low cytotoxicity. As a result of gene expression analysis through Quantitative RT-PCR, no changes in hair growth-related genes BMP6 and CTNNB1 was confirmed. but inhibitory activity of WEML on hair loss-related genes EGR1, SGK, DKK1, SRD5A1 and SRD5A2 was confirmed. Conclusion : We confirmed that WEML has excellent antioxidant efficacy and a inhibitory activity of hair loss-related genes including 5α-reductase genes. These results suggest that Mangifera indica leaves have a potential activity as a hair loss treatment for hair loss and hair growth. Biochemical or molecular biological research on hair loss is needed.