• Title/Summary/Keyword: hair cell

Search Result 269, Processing Time 0.039 seconds

Effect of ethanol extract from Achyranthis Radix on hair growth (우슬의 에탄올 추출물이 모발 성장에 미치는 영향)

  • Lee, Mi-Ja;Choi, Moon-Yeol;Kim, Yoo Jin;Kim, Mi Ryeo;Yoo, Wang Keun
    • The Korea Journal of Herbology
    • /
    • v.36 no.4
    • /
    • pp.1-7
    • /
    • 2021
  • Objective : As more and more people are interested in appearance in modern society, the increasing number of hair loss population can have an important impact on psychological and social problems such as depression and inappropriate interpersonal symptoms. Therefore, much research is being done on treatments for alopecia using herbal extracts with relatively few side effects. This study was investigated about the effect of Achyranthis Radix (AR) extract with ethanol solvent on hair growth. Methods : We determined the promoting efficacy of AR-ethanol extract compared with minoxidil (MNXD) on the growth of human hair dermal papilla cells (HDPCs). Cell viability was measured by MTT assay and cell proliferation was confirmed by cell cycle analysis from flow cytometry in HDPCs. Also, we monitored the safe concentration range through MTT assay. And protein expression of hair growth-related genes (insulin-like growth factor 1 (IGF-1), Wnt3a, Protein kinase B (Akt), Extracellular signal-regulated kinase (Erk)) was monitored by western blot. Results : On cell cycle analysis, the G2/M phase was higher than that of the DW group in AR ethanol extract group at 0.05 and 0.1 mg/㎖. All protein expression levels of HDPCs were increased in AR ethanol extract groups and the MNXD group, compared to the DW group, respectively. Conclusion : As mentioned above, AR extract increased cell proliferation and the protein expression of IGF-1, Wnt3a, Akt, Erk in HDPCs. These results suggest that AR ethanol extract has promoted hair growth and it might be potential hair growth supplement.

Radiation-induced Cochlea Hair Cell Death: Mechanisms and Protection

  • Tan, Pei-Xin;Du, Sha-Sha;Ren, Chen;Yao, Qi-Wei;Yuan, Ya-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5631-5635
    • /
    • 2013
  • Cochlea hair cell death is regarded to be responsible for the radiation-induced sensorineural hearing loss (SNHL), which is one of the principal complications of radiotherapy (RT) for head and neck cancers. In this mini-review, we focus on the current progresses trying to unravel mechanisms of radiation-induced hair cell death and find out possible protection. P53, reactive oxygen species (ROS) and c-Jun N-terminal kinase (JNK) pathways have been proposed as pivotal in the processes leading to radiation hair cell death. Potential protectants, such as amifostine, N-acetylcysteine (NAC) and epicatechin (EC), are claimed to be effective at reducing radiation-inducedhair cell death. The RT dosage, selection and application of concurrent chemotherapy should be pre-examined in order to minimize the damage to cochlea hair cells.

In vivo and In vitro hair growth promotion effects of extract from Glycine soja Siebold et Zucc

  • Yang, Jae Chan;Kim, Bo Ae
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.2
    • /
    • pp.137-143
    • /
    • 2016
  • Hair is a dermal adjunctive organ that protects the body from external physical and chemical stimuli; hair undergoes anagen, catagen, and telogen phases, with hair-loss occurring during the telogen phase. Alopecia is a condition wherein a person undergoes hair-loss far exceeding the normal amount, owing to diverse external factors. Wild beans are rich in isoflavone and amino acids known to prevent hair-loss; compared to cultivated beans, many wild bean species have higher protein content. This study aimed to develop a hair growth promoting solution, with superior hair growth promoting effects and fewer side effects, using naturally obtained Glycine soja Siebold et Zucc (GSSZ) extracts. Seven-week-old C57BL/6N male mice were classified into different experimental groups. Hair growth was observed in GSSZ-treated mice, and compared against that seen in 3 % minoxidil (MXD, positive control)-treated mice. Visual observations revealed a greater reduction in hair-loss in MXD and GSSZ application groups, compared to that in TXN group (hair loss induction using 1 % testosterone). Evaluation using an image analysis software revealed that compared to the positive control, TXN + GSSZ group showed the highest hair growth. TXN + MXD and control groups exhibited similar follicular cell growth, while the hair growth promotion patterns were similar in the negative control (normal), TXN + GSSZ, and TXN groups, as observed via histological analysis. GSSZ did not induce cytotoxicity (even at 2 mg/mL) in keratinocytes and dermal papilla cells; alternately, dermal papilla cell proliferation was activated in a (GSSZ) concentration-dependent manner. Therefore, the GSSZ extract promoted hair growth and increased hair growth-related cell activity, and could therefore be utilized in alopecia treatment.

Novel Heptapeptide Binds to the Lgr5 Induces Activation of Human Hair Follicle Cells and Differentiation of Human Hair Follicle Bulge Stem Cells (Lgr5와 결합하는 신규 헵타펩타이드를 이용한 인체 모낭 세포의 활성과 모낭줄기세포 분화 유도)

  • Min Woong Kim;Eung Ji Lee;Ha-Na Gil;Yong Ji Chung;Eun Mi Kim
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.49 no.1
    • /
    • pp.75-85
    • /
    • 2023
  • This study was conducted to assess the effect of heptapeptide, composed of seven amino acids, on the activation of human hair cells isolated from human hair follicles. We have confirmed that the heptapeptide could bind to Lgr5 from the results of surface plasmon resonance (SPR) analysis. Heptapeptide enhanced the proliferation of human hair follicle dermal papilla cells (HHFDPCs) in a dose dependent manner. It induced the protein level of nuclear β-catenin, and the expressions of β-catenin downstream target genes, including LEF1, Cyc-D1 and c-Myc, in HHFDPCs. Heptapeptide significantly induced the phosphorylation of Akt and ERK, and the mRNA expressions of growth factors, including hepatocyte growth factor (HGF), keratinocyte growth factor (KGF) and vascular endothelial growth factor (VEGF), in HHFDPCs. In addition, heptapeptide significantly increased mRNA expression levels of differentiation-related transcription factors of human hair germinal matrix cells (HHGMCs) and differentiation markers of human hair outer root sheath cells (HHORSCs). Additionally, we investigated the effect of heptapeptide on human hair follicle stem cells (HHFSCs) differentiation and found that the heptapeptide reduced the mRNA and protein levels of stem cell markers, while it increased those levels of differentiation markers. These results have indicated that the heptapeptide promotes proliferation or differentiation of various types of hair follicle constituent cells through the induction of Wnt/β-catenin signaling. From the results, we have suggested that the heptapeptide in this study could be applied as a new functional material for the improvement of hair growth and alopecia.

Human umbilical cord blood mesenchymal stem cells engineered to overexpress growth factors accelerate outcomes in hair growth

  • Bak, Dong Ho;Choi, Mi Ji;Kim, Soon Re;Lee, Byung Chul;Kim, Jae Min;Jeon, Eun Su;Oh, Wonil;Lim, Ee Seok;Park, Byung Cheol;Kim, Moo Joong;Na, Jungtae;Kim, Beom Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.5
    • /
    • pp.555-566
    • /
    • 2018
  • Human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) are used in tissue repair and regeneration; however, the mechanisms involved are not well understood. We investigated the hair growth-promoting effects of hUCB-MSCs treatment to determine whether hUCB-MSCs enhance the promotion of hair growth. Furthermore, we attempted to identify the factors responsible for hair growth. The effects of hUCB-MSCs on hair growth were investigated in vivo, and hUCB-MSCs advanced anagen onset and hair follicle neogeneration. We found that hUCB-MSCs co-culture increased the viability and up-regulated hair induction-related proteins of human dermal papilla cells (hDPCs) in vitro. A growth factor antibody array revealed that secretory factors from hUCB-MSCs are related to hair growth. Insulin-like growth factor binding protein-1 (IGFBP-1) and vascular endothelial growth factor (VEGF) were increased in co-culture medium. Finally, we found that IGFBP-1, through the co-localization of an IGF-1 and IGFBP-1, had positive effects on cell viability; VEGF secretion; expression of alkaline phosphatase (ALP), CD133, and ${\beta}-catenin$; and formation of hDPCs 3D spheroids. Taken together, these data suggest that hUCB-MSCs promote hair growth via a paracrine mechanism.

Effect of essential oil from Coicis Semen (ECS) on proliferation of human hair dermal papilla cells (의이인의 정유 분획물이 모유두 세포의 성장에 미치는 영향)

  • Kim, Yoo-Jin;Seo, Kyung Hye;Jang, Gwi Young;Jung, Ji Wook;Kim, Mi Ryeo
    • The Korea Journal of Herbology
    • /
    • v.36 no.3
    • /
    • pp.47-53
    • /
    • 2021
  • Objectives : Currently, the alopecia is one of the most emotionally stressful syndromes in human life. Human hair dermal papilla cells (HDPCs) play an essential role in controlling hair growth and in regulating hair cycle. We performed MTT assay, cell cycle, and western blot to determine the effects of essential oil from Coicis Semen (ECS) on hair growth in HDPCs. Methods : We monitored cell proliferations by MTT assay in HDPCs. After setting up the safe and effective concentration range to be treated ECS, cell cycle analysis was performed using flow cytometry. Also, the protein expression of hair growth-related factors such as insulin like growth factor-1 (IGF-1), Wnt, extracellular signal-regulated kinase (ERK), serine/threonine-specific protein kinase (Akt) in HDPCs was determined by western blot. Results : As results, cell proliferation was increased in ECS group compared to dimethyl sulfoxide (DMSO) group and minoxidil (MNXD) group. Cell number of ECS group was more decrease in sub G1 phase than cell number of DMSO group. Also, cell number of ECS group increased compared to cell number of DMSO group in G1 phase. Protein expression of ECS group was higher than protein expression of DMSO group on related hair growth factors (IGF-1, Wnt, ERK, Akt). Conclusion : As mentioned above, ECS increased cell proliferation and the protein expression of IGF-1, Wnt, ERK, and Akt. These results suggest that ECS could be used as a potential material for the treatment of alopecia by increasing the proliferation of HDPCs.

Experimental studies of Glycine max Merr. (black bean), Triticum aestivum L. (wheat) and Oryza sativa L. (rice bran) extracts on the effects of hair growth activity and physical properties (검은콩, 밀, 쌀겨 추출물이 모발의 성장과 물리적 특성에 미치는 효과)

  • Park, Hye-Yoon;Kim, Su-Na;Kang, Byung-Ha;Lee, John-Hwan
    • Korean Journal of Oriental Medicine
    • /
    • v.16 no.3
    • /
    • pp.167-173
    • /
    • 2010
  • Objects : Glycine max Merr. (black bean), Triticum aestivum L. (wheat) and Oryza sativa L. (rice bran) have been widely used for treatment of relaxion of smooth muscle, gastrointestinal hemorrhage and alopecia in Korean Traditional Medicine. In this research, we examined the effect of the extracts, obtained from EtOH extracts of 3 kinds of traditional plants, on hair growing activity of the DP6 and C3H10T1 cell and physical properties. Materials and Methods : On the basis of previous studies, three traditional plants were selected and we extracted them with ethanol. We evaluated their hairy dermal papillar cell proliferation activity and mouse mesenchymal stem cell in vitro model. Also, 3 herbal extracts were added to the normal shampoo formulation in ranges of 0.1% and we validated tensile properties and physical changes using aged hair. In this research, we compared the tensile strength, shine and color appearance between the hair (general formulation) and the hair after applying shampoo with natural extracts. To analyze the luster and color image, we use the SAMBA hardware and software made by Bossa Nova Technologies. Results : In the comparative test for tensile characteristic between the hair treated general formulation(control) and the hair applying special formulation including 3 kinds of extracts, tensile distance and energy of the latter are larger than control on average. The shine and color appearance were also increased after using shampoo including natural extracts(shine : 10.9%, color appearance: 24.12%). We observed the enhancement of hair growth activity in the DP6 and C3H10T1 cell. Especially black bean extracts had the most powerful effect in the dermal papillar cell proliferation. Conclusion : These experiments suggest that extracts of Glycine max Merr. (black bean), Triticum aestivum L. (wheat) and Oryza sativa L. (rice bran) stimulate the hair growth activity and can improve physical activities of aged hair. Shampoo product, which contains 3 kinds of natural extracts, would be used for the treatment for aged hair.

Evaluation of Antioxidant Fractions and Hair Loss Prevention Effects of Platycodon grandiflorum (도라지 분획물의 항산화 및 탈모예방 효과)

  • Jung, Min-Hwa
    • Journal of Life Science
    • /
    • v.29 no.7
    • /
    • pp.779-784
    • /
    • 2019
  • Free radicals are known to inhibit hair vitality by damaging the cell membranes of the hair follicles. The purpose of this study was to determine the antioxidant activities and the capacity for hair loss prevention of extracts from Platycodon grandiflorum. We prepared butanol (BF) and water (WF) fractions from P. grandiflorum. DPPH and ABTS radical scavenging activities were measured to investigate the antioxidant activities of the fractions. Both fractions exhibited dose-dependent antioxidant activities for DPPH radical production, and BF and WF almost completely suppressed ABTS radical production when supplied at 10 and 100 mg/ml, respectively. We confirmed a skin regeneration effect by treating human HaCaT skin cells with a range of BF and WF concentrations for 24 and 48 hr. The extract treatments accelerated cell proliferation. We also assayed the capacity of BF and WF to suppress inflammation using RAW264.7 cells. BF dose-dependently suppressed nitrous oxide (NO) production. Treatment of human hair follicle dermal papilla cells (HFDPC) with BF and WF promoted cell proliferation after 24, 48, and 72 hr of treatment when supplied at 10, 50, 100, and $200{\mu}g/ml$. Taken together, these results confirm the possibility of using BF and WF extracts from P. grandiflorum in formulating hair loss prevention products.

The Localization of Cytokeratin 19 and Vimentin in Sprague Dawley Albino Rat Skin Tissue

  • Kim, Tae Keun;Kim, Yong Joo;Min, Byoung Hoon;Kim, Soo Jin
    • Applied Microscopy
    • /
    • v.44 no.1
    • /
    • pp.15-20
    • /
    • 2014
  • Cytokeratin 19 (CK19) expressed in epidermis of skin, bulge region of hair follicle, outermost layer of outer root sheath and proximal and distal to bulge. Vimentin is a fibrous protein that localized in cytoplasm of fibroblast and forms cytoskeleton to maintain shape of cell and nucleus. In this study, CK19 and vimentin in skin were confirmed with light, fluorescence and transmission electron microscope. As a result, CK19 was localized epidermis, hair follicles, outer root sheath and nucleus of Merkel's cell. However, vimentin was localized some epidermis, dermis, hypodermis and nucleus of Merkel's cell. The role of CK19 is self-renewal and homeostasis in skin. Also, hair follicle regeneration and hair growth is known to be related. It is supposed that required of structural proteins that make up cytoskeleton is increased. Thereby, expression of CK19 is increased. It is considered that vimentin localized in order to stabilize structure of cell and cytoskeleton of fibroblasts. Also, CK19 and vimentin present in nuclei of Merkel's cell, and to act as a fibrous protein that make up end of a nerve fiber present in Merkel's cell and paracrine function of Merkel's cell.

Investigation on the effect of water extracts of Mangifera indica leaves on the hair loss-related genes in human dermal papilla cells (망고 잎 열수 추출물의 모유두 세포에서 탈모 관련 유전자 발현에 미치는 영향 연구)

  • Choi, Youngsoo;Kim, Eunmi;Lee, Seong Hee;Han, Hyosang;Kim, Keekwang
    • The Korea Journal of Herbology
    • /
    • v.36 no.3
    • /
    • pp.39-46
    • /
    • 2021
  • Objectives : Mangifera indica leaves are well known for having a variety of benefits, including anti-inflammatory, anti-tumor, diabetic retinopathy and diabetic vasculosis. However, the effects of Mangifera indica leaves on hair loss inhibition have not been studied. In this study, we investigated to find out the activity of Mangifera indica leaves on hair loss. Methods : 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid(ABTS) analysis was performed to confirm the antioxidant efficacy of the water extract of Mangifera indica leaves (WEML). To examine the effect of WEML on cell viability in dermal papillar (DP) cells, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetra Zolium (MTS) analysis was performed. The changes in the mRNA expression level of the hair loss and hair growth-related genes in dermal papilla cells by WEML treatment were confirmed by quantitative RT-PCR. Results : In dermal papilla (DP) cells, ABTS analysis and MTS analysis of WEML showed antioxidant efficacy and low cytotoxicity. As a result of gene expression analysis through Quantitative RT-PCR, no changes in hair growth-related genes BMP6 and CTNNB1 was confirmed. but inhibitory activity of WEML on hair loss-related genes EGR1, SGK, DKK1, SRD5A1 and SRD5A2 was confirmed. Conclusion : We confirmed that WEML has excellent antioxidant efficacy and a inhibitory activity of hair loss-related genes including 5α-reductase genes. These results suggest that Mangifera indica leaves have a potential activity as a hair loss treatment for hair loss and hair growth. Biochemical or molecular biological research on hair loss is needed.