• Title/Summary/Keyword: habitat adaptation

Search Result 44, Processing Time 0.027 seconds

Spatial Planning of Climate Adaptation Zone to Promote Climate Change Adaptation for Endangered Species (생물다양성 보전을 위한 기후적응지역 설정 연구 -삵의 서식지를 중심으로-)

  • Lee, Dongkun;Baek, Gyounghye;Park, Chan;Kim, Hogul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.6
    • /
    • pp.111-117
    • /
    • 2011
  • This study attempts to facilitate climate change adaptation in conservation area by spatial planning of climate adaptation zone for endangered species. Spatial area is South Korea and select leopard cat (Prionailurus bengalensis) as a target species of this study. In order to specify the climate adaptation zone, firstly, Maximum entropy method (Maxent) was used to identify suitable habitat, and then core habitat was selected for leopard cat. Secondly, land use resistance index was evaluated and least cost distance was analyzed for target species. In this step we choose dispersal capacity of leopard cat to reflect species ecological characteristic. Finally, climate adaptation zone is described and adaptation measures are suggested. The presented approach could be generalized for application into conservation planning and restoration process. Furthermore, spatial planning of climate adaptation zone could increase heterogeneity of habitat and improve adaptive capacity of species and habitat itself.

Reproducing and Restoring Space Planning for Red Fox (Vulpes vulpes) Restoration - Focusing on Sobaeksan National Park - (여우(Vulpes vulpes) 복원을 위한 증식·복원장 공간 계획에 관한 연구 - 소백산국립공원 지역을 사례로 -)

  • Cho, Dong-Gil;Shim, Yun Jin;Hong, Jin-Pyo;Cha, Jin-Yeol
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.4
    • /
    • pp.1-14
    • /
    • 2013
  • A species restoration plan requires a process where the first is to thoroughly study the target species, second is to provide them with an onsite reproduction and adaptation period, and finally, third is to release them to their natural habitat. This study focuses on the space planning for target species' successful onsite reproduction and adaptation. For the study, a site planning near Sobaeksan National Park was implemented with Red Fox's behavior and habitat characteristics in mind for its recovery, reproduction, and natural adaptation. During site selection and planning, the basic aim was to incorporate the existing site as much as possible thus reducing the impact on the environment from the recovery plan. In addition, for a stable recovery of the Red Fox population, the site was classified into three different areas : core area, buffer zone, and transition area. Then, the facilities that help Red Fox's reproduction and adaptation such as reproduction center, foraging site, adaptation training center were planned. Under the condition that the site will be off limit to the public, a limited number of paths for monitoring was provided. For the site's vegetation, the existing species were planted as much as possible with the addition of plants that the Red Fox consume. The facilities included as Red Fox's habitat were fox burrows for hiding and ecological ponds for drinking. From this study, the recovery of the endangered fox species is expected as well as the contribution to an effort to increase of awareness toward the biological resources in Korea through Nagoya protocol. Furthermore, it has the potential to change the public's attitude toward endangered species recovery projects through publicizing and providing experience to the national park visitors.

Adaptation of Farm Field Transplanting and Growth Habitat of Artemisia capillaris in Korea (사철쑥의 내륙과 해안 자생지 생육과 포장 이식의 적응)

  • Song, Hong Seon;Kim, Seong Min
    • Korean Journal of Medicinal Crop Science
    • /
    • v.21 no.1
    • /
    • pp.49-53
    • /
    • 2013
  • This study was performed to evaluate the adaptability of farm field soil transplanting and habitat growth in inland and seashore areas of Artemisia capillaris in South Korea. In habitat, Artemisia capillaris was distributed both in the inland and seashore area as hemicryptophyte, and it grows individually on the slope of the open sunlight. The inland and seashore soils of habitat was the slightly acid and weakly alkaline, respectively. Plant height was 55.6 cm, and it was higher in inland than that of the seashore area. The stem and branch number was less in inland than that of the seashore area. Flowering period was mid-August, and flower of inland blossomed early 1 ~ 3 days than that of the seashore area. The flowering and fruiting rate was slightly lower in inland than that of the seashore area. After transplanting of Artemisia capillaris, plant height was 71.7 cm, and it was higher 16.1 cm than that of the habitat. The stem and branch number was more than that of the habitat, and flower blossomed early 3 ~ 4 days than that of the habitat. Transplanting survival rate was 85.1%, it was slightly higher in inland than that of the seashore area.

Insect Adaptations to Changing Environments - Temperature and Humidity

  • Singh, Tribhuwan;Bhat, Madan Mohan;Khan, Mohammad Ashraf
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.19 no.1
    • /
    • pp.155-164
    • /
    • 2009
  • The most important factors in environment that influence the physiology of insects are temperature and humidity. Insects display a remarkable range of adaptations to changing environments and maintain their internal temperature (thermoregulation) and water content within tolerable limits, despite wide fluctuations in their surroundings. Adaptation is a complex and dynamic state that widely differs in species. Surviving under changing environment in insects depends on dispersal, habitat selection, habitat modification, relationship with ice and water, resistance to cold, diapause and developmental rate, sensitivity to environmental signals and syntheses of variety of cryoprotectant molecules. The mulberry silkworm (Bombyx mori) is very delicate and sensitive to environmental fluctuations and unable to survive naturally because of their domestication since ancient times. Thus, the adaptability to environmental conditions in the silkworm is quite different from those of wild insects. Temperature, humidity, air circulation, gases and photoperiod etc. shows a significant interaction in their effect on the physiology of silkworm depending upon the combination of factors and developmental stage affecting growth, development, productivity and quality of silk. An attempt has been made in this article to briefly discuss adaptation in insects with special emphasis on the role of environmental factors and their fluctuations and its significance in the physiology of mulberry silkworm, B. mori.

A Study on Categorizing Ecosystem Groups for Climate Change Risk Assessment - Focused on Applicability of Land Cover Classification - (기후변화 리스크 평가를 위한 생태계 유형분류 방안 검토 - 국내 토지피복분류 적용성을 중심으로 -)

  • Yeo, Inae;Bae, Haejin;Hong, Seungbum
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.6
    • /
    • pp.385-403
    • /
    • 2017
  • This study showed the national ecosystem classification for the spatial standards of ecosystems-based approaches to the risk assessments and adaptation plan. The characteristics of climate change risk assessment, implement national adaptation plans, and ecosystem/habitat classification status was evaluated. Focusing on the land cover classification widely utilized as spatial data for the assessments of biodiversity and ecosystem services in the UK and other countries in Europe, the applicability of the national land cover classification for climate change risk assessments was reviewed. Considering the ecosystem classification for climate change risk assessment and establishing adaptation measures, it is difficult to apply rough classification method to the land cover system because of lack of information on habitat trend by categorization. The results indicated that forest ecosystems and agro-ecosystem occupied 62.3% and 25.0% of land cover, respectively, of the entire country. Although the area is small compared with the land area, wetland ecosystem (2.9%), marine ecosystem (0.4%), coastal ecosystem (0.6%), and urban ecosystem (6.1%) can be included in the risk assessments. Therefore, it is necessary to subdivide below the medium classification for the forest and agricultural land, as well as Inland wetland, which has a higher proportion of habitat preference of taxa than land area, marine/coastal habitat, and transition areas such as urban and natural ecosystem.

Organism-environment interactions and differential gene expression patterns among open-coastal and estuarine populations of Porphyra umbilicalis Kützing (Rhodophyta) in the Northwest Atlantic

  • Eriksen, Renee L.;Klein, Anita S.
    • Fisheries and Aquatic Sciences
    • /
    • v.21 no.8
    • /
    • pp.28.1-28.12
    • /
    • 2018
  • Intertidal macroalgae are exposed to many abiotic stress factors, and they must regularly react to changes in their environment. We used RNA-seq to describe how Porphyra umbilicalis (Rhodophyta) changes gene expression patterns to interact with different habitats. Tissue samples were taken from a typical habitat along the open-coast of the Northwest Atlantic, as well as from a rare, atypical habitat in an estuarine tidal rapid environment. Differential gene expression analyses suggest that pathogic bacteria and viruses may be a significant factor influencing the transcriptome in the human-impacted estuarine environment, but the atypical habitat does not necessarily induce more stress in Porphyra umbilicalis growing there. We found genes related to nitrogen transport are over-expressed in tissue from the open-coastal site compared to those from the estuarine site, where environmental N levels approach hypertrophic levels. Low N levels impede growth, but high levels are toxic to cells, and we use qPCR to show this species regulates expression of a putative high-affinity $NH_4{^+}$ transporter under low and high N conditions. Differences in expression of this transporter in these habitats appear to be inherited from parent to offspring and have general implications for adaptation to habitat in other species that are capable of asexual reproduction, as well as more specific implications for this species' use in aquaculture.

A Study on Development of Climate Change Adaptation in Ecosystem Sector - Focused on Policy and Research Base in Major Countries - (생태분야 기후변화 적응의 흐름과 발전방향 - 국내외 정책 및 연구기반을 중심으로 -)

  • Yeo, Inae;Hong, Seungbum;Park, Eunjin
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.1
    • /
    • pp.1-22
    • /
    • 2019
  • This study aims at deriving the implications for adaptation policy and research target regarding climate change risk assessment in ecosystem sector in Korea. The common ground of exemplary cases of "world leaders" in terms of adaptation policies and researches was that they emphasize nationwide study on climate change on biodiversity and ecosystem in target of establishing scientific evidence-bases and reducing uncertainty for their national adaptation policies and plans. In light of this trend, Korean government should settle down more successful adaptation structure by leading adaptation system in further national policy-settings to observe UNFCCC and CBD integratedly and effectively, considering the economic value of adaptation in policy, and strengthening scientific research programs and technology developments. Moreover, risks assessment based on diagnoses and analysis on the risk factors (hazard, exposure, and vulnerability) for climate change in nationwide habitats and species and consolidations with subsequent adaptation strategies could make adaptations in ecosystem sector more effective and successful.

A Methodology for Selection of Habitat Management Areas for Amphibians and Reptiles Considering Soil Loss (토양유실을 고려한 양서파충류의 서식지 관리지역 선정방법)

  • Kim, Ji-Yeon;Lee, Dong-Kun;Mo, Yong-Won
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.21 no.6
    • /
    • pp.55-69
    • /
    • 2018
  • As disaster risk and climate change volatility increase, there are more efforts to adapt to disasters such as forest fires, floods, and landslides. Most of the research, however, is about influence of human activities on disaster and there is few research on disaster adaptation for species. Previous studies focusing on biodiversity in selecting conservation areas have not addressed threats of disaster in the habitats for species. The natural disasters sometimes play role of drivers of ecological successions in the long run, but they might cause serious problems for the conservation of vulnerable species which are endangered. The purpose of this study is to determine whether soil loss (SL) is effective in selecting habitat management areas for amphibians and reptiles. RUSLE model was used to calculate soil loss (SL) and the distribution of each species (SD) was computed with MaxEnt model to find out the biodiversity index. In order to select the habitat management area, we estimated the different results depending if value of soil loss was applied or not by using MARXAN, a conservation priority selection tool. With using MARXAN, conservation goals can be achieved according to the scenario objectives, and the study has been made to meet the minimum habitat area. Finally, the results are expressed in two; 1) the result of soil loss and biodiversity with MATRIX method and 2) the result of regional difference calculated with MARXAN conservation prioritization considering soil loss. The first result indicates that the area with high soil loss and low species diversity have lower conservation values and thus can be managed as natural disturbances. In the area where soil loss is high and species diversity is also high, it becomes where a disaster mitigation action should be taken for the species. According to the conservation priorities of the second result, higher effectiveness of conservation was obtained with fewer area when it considered SL in addition to SD, compared to when considered only biodiversity. When the SL was not taken into consideration, forest area with high distribution of species were important, but when SL considered, the agricultural area or downstream of the river were represented to be a major part of habitats. If more species data or disaster parameters other than soil loss are added as variables later, it could contribute as a reference material for decision-making to achieve various purposes.

Analysis of Future Bioclimatic Zones Using Multi-climate Models (다중기후모형을 활용한 동북아시아의 미래 생물기후권역 변화분석)

  • Choi, Yuyoung;Lim, Chul-Hee;Ryu, Jieun;Jeon, Seongwoo
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.5
    • /
    • pp.489-508
    • /
    • 2018
  • As climate changes, it is necessary to predict changes in the habitat environment in order to establish more aggressive adaptation strategies. The bioclimatic classification which clusters of areas with similar habitats can provide a useful ecosystem management framework. Therefore, in this study, biological habitat environment of Northeast Asia was identified through the establishment of the bioclimatic zones, and the impac of climate change on the biological habitat was analyzed. An ISODATA clustering was used to classify Northeast Asia (NEA)into 15 bioclimatic zones, and climate change impacts were predicted by projecting the future spatial distribution of bioclimatic zones based upon an ensemble of 17 GCMs across RCP4.5 and 8.5 scenarios for 2050s, and 2070s. Results demonstrated that significant changes in bioclimatic conditions can be expected throughout the NEA by 2050s and 2070s. The overall zones moved upward, and some zones were predicted to be greatly expanded or shrunk where we suggested as regions requiring intensive management. This analysis provides the basis for understanding potential impacts of climate change on biodiversity and ecosystem. Also, this could be used more effectively to support decision making on climate change adaptation.