• Title/Summary/Keyword: gyroscope

Search Result 436, Processing Time 0.025 seconds

Gyro HV Power Supply Design for Attitude Control in the Satellite (위성 자세제어용 자이로 HVPS 설계)

  • Kim, Eui-Chan;Koo, Ja-Chun
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.109-113
    • /
    • 2007
  • In this paper, the design process of the High Voltage Power Supply for RLG(Ring Laser Gyroscope) is described. The specification for High Voltage Power Supply(HVPS) is proposed. Also, The analysis of Flyback converter topology is explained. The Design for the HVPS is composed of the inverter circuit, feedback control circuit, high frequency switching transformer design, and voltage doubler circuit.

  • PDF

The fabrication of Light Source for Fiber Optic Gyroscope (광섬유 자이로스코프용 광원 제작)

  • 정인식;안세경;배정철;최영규;홍창희
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.370-373
    • /
    • 2003
  • Superluminescent diodes(SLDs) are the optimum light sources for application in optical measurement systems such as fiber gyroscopes, optical time domain reflectometers, and to short and medium distance optical communication systems. The broadband characteristics of SLDs reduce Rayleigh backscattering noise, polarization noise, and the bias offset due to the nonlinear Kerr effect in fiber gyro systems. In this paper, in order to suppress lasing oscillation, we introduced a laterally tilted SCH(Separate Confinement Heterostructure)-SLD with a window region. An output power of 11mW has been achieved at 200mA injection current at 25$^{\circ}C$. At 120mA, parallel and perpendicular to the junction were 31$^{\circ}$${\times}$38$^{\circ}$.

  • PDF

The Mechanical Dither Design of Navigation Guide Structure (네비게이션 가이드 구조물의 기계적 진동설계)

  • Lee, Jeong-Ick
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.6
    • /
    • pp.1949-1954
    • /
    • 2010
  • The gyroscopes have been used as a suitable inertial instrument for the navigation guidance and attitude controls. The accuracy as very sensitive sensor is limited by the lock-in region(dead band) due to the frequency coupling between two counter-propagating waves at low rotation rates. This frequency coupling gives no phase difference, and an angular increment is not detected. This problem can be overcome by mechanically dithering the gyroscope. This paper presents the design method of mechanical dither by the theoretical considerations and the verification of the theoretical equations through FEM(Finite Element Method) applications. As a result, the maximum prediction error of resonant frequency and peak dither rate was under 5 percent. The theoretical equations for the mechanical performances of dither can be said to be feasible.

Implementation of a closed-loop signal processor for the open-loop FOG (개회로 FOG의 폐회로 신호처리기의 구현)

  • 김도익;예윤해
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.5
    • /
    • pp.426-430
    • /
    • 1997
  • A signal processor is implemented to verify the possibility of a closed-loop signal processing for the open-loop fiber-optic gyroscope (FOG). As an all-digital implementation of phase tracking scheme, it does analog-to digital conversion of the detector output and signal processing all-digitally thereafter for a noise-immune FOG signal processor. It has a potential of 36-bits resolution in the $2\pi$ range which is best in the number and sets no limit in the magnitude of the phase shift. The new signal processor was tested on an all-fiber gyroscope and turned out to have a resolution of $3\mu$rad(corresponds to 0.74 deg/hr), which is good enough to measure the Earth's rotation rate.

  • PDF

Development of Displacement Measuring Sensor Module to Monitoring About Variation and Distortion for Bridge Infrastructure at Wireless Communication Environmental (교량구조물의 구조적 변형을 측정하는 무선통신기반 변위센서모듈 개발)

  • Ryu, Seung-Ki;Moon, Hak-Yong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.5
    • /
    • pp.87-95
    • /
    • 2010
  • Lots of bridge structure generated the change of outward formation according to durability capability and decrepitude by long use. Especially, in case of the typhoon, snowing and earthquake is going to make rapidly more worse formation about the old structural facilitys. Also, outward formation by irregular and micro-distortion in bridge structure could not easily checked by normal diagnostics method. As a result, performance-capability of structure facility is getting to make a decline in standard of structure performance. Recently, real-time monitoring technology by wireless environment go into the study of irregular movement for structure facility. This paper presents the development of sensor to displacement checking about bridge structure. Sensing method of developed sensor put bring into the gyroscope technology using the acceleration speed and angular acceleration speed. This paper also will simulated to verified the monitoring capability of developed sensor against random vibration, frequency and distortion in simulated equipment.

A study on Multi Mass System for MEMS vibratory Gyroscope (MEMS공진형 자이로스코프 응용을 위한 다중질량시스템에 관한 연구)

  • Hwang, Young-Seok;Jeon, Seung-Hoon;Jung, Hyoung-Kyoon;Lee, June-Young;Chang, Hyun-Kee;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2005.11a
    • /
    • pp.33-35
    • /
    • 2005
  • In this paper, a two-mass system for SiOG (Silicon on Glass) vibratory gyroscope with the need of frequency tuning was proposed to increase the stability of the device with wide bandwidth. Air damping and bandwidth were analyzed using MATLAB. The measured resonance frequency is 5.2 kHz, which is 7 kHz in the design. But the measured bandwidth is 450 Hz, similar to the designed bandwidth with 500 Hz. Also the frequency difference (210 Hz) between the driving and sensing part is smaller than the wide bandwidth of two mass system.

  • PDF

Development of a Test System for a Hemispherical Resonator and Control of Vibrating Pattern (반구형공진기 실험장치 개발과 진동패턴 제어)

  • Kim, Dongguk;Yoon, Hyungjoo;Jin, Jaehyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.10
    • /
    • pp.813-819
    • /
    • 2013
  • The authors have developed a test system for a hemispherical resonator gyroscope by using NI FPGA equipment. We have verified its suitability for the research of resonator gyroscopes through several tests: deriving resonance, controlling amplitudes, and estimating resonator parameters. The authors have adjusted a vibrating pattern to be aligned with the driving axis (or electromagnets). This pattern alignment is a basic and important operation of the FTR mode, which is one of operating modes for resonant gyroscopes.

Step size determination method using neural network for personal navigation system (개인휴대 추측항법 시스템을 위한 신경망을 이용한 보폭 결정 방법)

  • 윤선일;홍진석;지규인
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.80-80
    • /
    • 2000
  • The GPS can provide accurate position information on the earth. But GPS receiver can't give position information inside buildings. DR(Dead-Reckoning) or INS(Inertial Navigation System) gives position information continuously indoors as well as outdoors, because they do not depend on the external navigation information. But in general, the inertial sensors severely suffer from their drift errors, the error of these navigation system increases with time. GPS and DR sensors can be integrated together with Kalman filter to overcome these problems. In this paper, we developed a personal navigation system which can be carried by person, using GPS and electronic pedometer. The person's footstep is detected by an accelerometer installed in vertical direction and the direction of movement is sensed by gyroscope and magnetic compass. In this case the step size is varying with person and changing with circumstance, so determining step size is the problem. In order to calculate the step size of detected footstep, the neural network method is used. The teaming pattern of the neural network is determined by human walking pattern data provided by 3-axis accelerometer and gyroscope. We can calculate person's location with displacement and heading from this information. And this neural network method that calculates step size gives more improved position information better than fixed step size.

  • PDF

Determination of Fall Direction Before Impact Using Support Vector Machine (서포트벡터머신을 이용한 충격전 낙상방향 판별)

  • Lee, Jung Keun
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.47-53
    • /
    • 2015
  • Fall-related injuries in elderly people are a major health care problem. This paper introduces determination of fall direction before impact using support vector machine (SVM). Once a falling phase is detected, dynamic characteristic parameters measured by the accelerometer and gyroscope and then processed by a Kalman filter are used in the SVM to determine the fall directions, i.e., forward (F), backward (B), rightward (R), and leftward (L). This paper compares the determination sensitivities according to the selected parameters for the SVM (velocities, tilt angles, vs. accelerations) and sensor attachment locations (waist vs. chest) with regards to the binary classification (i.e., F vs. B and R vs. L) and the multi-class classification (i.e., F, B, R, vs. L). Based on the velocity of waist which was superior to other parameters, the SVM in the binary case achieved 100% sensitivities for both F vs. B and R vs. L, while the SVM in the multi-class case achieved the sensitivities of F 93.8%, B 91.3%, R 62.3%, and L 63.6%.

Performance Analysis of Self-Alignment in the Temperature Stabilizing State of Inertial Navigation System (관성항법장치 온도 안정화 상태에서의 초기정렬 성능분석)

  • Kim, Cheon-Joong;Lyou, Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.8
    • /
    • pp.796-803
    • /
    • 2011
  • It is called self-alignment or initial alignment that INS(Inertial Navigation System) is aligned using the measurements from the inertial sensors as an accelerometer and a gyroscope and the inserted reference navigation information in the stop state. The main purpose of self-alignment is to obtain the initial attitude of INS. The accuracy of self-alignment is determined by the performance grade of the used inertial sensors, especially horizontal attitude accuracy by the horizontal accelerometer and vertical attitude accuracy by the E-axis gyroscope. Therefore the uncertain errors in the inertial sensors cause the performance of self-alignment to degrade. In this paper, we analyze theoretically and through a simulation how the errors of inertial sensors in the temperature stabilizing state, one of the uncertain errors, affect the accuracy of self-alignment.