DOI QR코드

DOI QR Code

Determination of Fall Direction Before Impact Using Support Vector Machine

서포트벡터머신을 이용한 충격전 낙상방향 판별

  • Lee, Jung Keun (Department of Mechanical Engineering, Hankyong National University)
  • 이정근 (한경대학교 기계공학과)
  • Received : 2014.11.12
  • Accepted : 2015.01.15
  • Published : 2015.01.31

Abstract

Fall-related injuries in elderly people are a major health care problem. This paper introduces determination of fall direction before impact using support vector machine (SVM). Once a falling phase is detected, dynamic characteristic parameters measured by the accelerometer and gyroscope and then processed by a Kalman filter are used in the SVM to determine the fall directions, i.e., forward (F), backward (B), rightward (R), and leftward (L). This paper compares the determination sensitivities according to the selected parameters for the SVM (velocities, tilt angles, vs. accelerations) and sensor attachment locations (waist vs. chest) with regards to the binary classification (i.e., F vs. B and R vs. L) and the multi-class classification (i.e., F, B, R, vs. L). Based on the velocity of waist which was superior to other parameters, the SVM in the binary case achieved 100% sensitivities for both F vs. B and R vs. L, while the SVM in the multi-class case achieved the sensitivities of F 93.8%, B 91.3%, R 62.3%, and L 63.6%.

Keywords

References

  1. M. E. Tinetti, C. F. Mendes De Leon, J. T. Doucette, and D. I. Baker, "Fear of falling and fall-related efficacy in relationship to functioning among community-living elders", J. Gerontol., Vol. 49, No. 3, pp. M140-M147, 1994. https://doi.org/10.1093/geronj/49.3.M140
  2. T. Shany, S. J. Redmond, M. R. Narayanan, N. H. Lovell, "Sensors-based wearable systems for monitoring of human movement and falls", IEEE Sensors J., Vol. 12, No. 3, pp. 658-670, 2012. https://doi.org/10.1109/JSEN.2011.2146246
  3. F. Bagala, C. Becker, A. Cappello, L. Chiari, K. Aminian, J. M. Hausdorff, W. Zijlstra, and J. Klenk "Evaluation of accelerometer-based fall detection algorithms on real world falls", PLoS One, Vol. 7, No. 5, p. e37062, 2012. https://doi.org/10.1371/journal.pone.0037062
  4. G. C. Park, A. Y. Jeon, S. H. Lee, J. M. Son, M. C. Kim, and G. R. Jeon, "Implementation of a falls recognition system using acceleration and angular velocity signals", J. Sensor Sci. & Tech., Vol. 22, No. 1, pp. 54-64, 2013. https://doi.org/10.5369/JSST.2013.22.1.54
  5. S. H. Liu and W. C. Cheng, "Fall detection with the support vector machine during scripted and continuous unscripted activities", Sensors, Vol. 12, pp. 12301-12316, 2012. https://doi.org/10.3390/s120912301
  6. G. Shi, C. S. Chan, W. J. Li, K. S. Leung, Y. Zou, and Y. Jin, "Mobile human airbag system for fall protection using MEMS sensors and embedded SVM classifier", IEEE Sensors J., Vol. 9, No. 5, pp. 495-503, 2009. https://doi.org/10.1109/JSEN.2008.2012212
  7. T. Tamura, T. Yoshimura, M. Sekine, M. Uchida, and O. Tanaka, "A wearable airbag to prevent fall injuries", IEEE Trans. Inf Technol Biomed, Vol. 13, No. 6, pp. 910-914, 2009. https://doi.org/10.1109/TITB.2009.2033673
  8. G. Wu and S. Xue, "Portable preimpact fall detector with inertial sensors", IEEE Trans. Neural Syst. Rehab. Eng., Vol. 16, No. 2, pp. 178-183, 2008. https://doi.org/10.1109/TNSRE.2007.916282
  9. J. K. Lee, "Study on vertical velocity-based pre-impact fall detection", J. Sensor Sci. & Tech., Vol. 23, No. 4, pp. 251-258, 2014. https://doi.org/10.5369/JSST.2014.23.4.251
  10. M. Tolkiehn, L. Atallah, B. Lo, Y. Guang-Zhong, "Direction sensitive fall detection using a triaxial accelerometer and a barometric pressure sensor", IEEE EMBC, pp. 369-372. 2011.
  11. A. Y. Jeon, J. Y. Yoo, G. C. Park, and G. R. Jeon, "Implementation of falls detection system using 3-axial accelerometer sensor", J. Korea Academia-Industrial Cooperation Soc., Vol. 11, No. 5, pp. 1564-1572, 2010. https://doi.org/10.5762/KAIS.2010.11.5.1564
  12. Y. J. Lee, P. J. Lee, H. K. Yang, C. H. Kim, and J. W. Lee, "Research for effective accelerometer signal processing to detect the falling activity", in Summer Annual Conf. of the Korean Institute of Electrical Engineers, pp. 1794-1795, 2011.
  13. J. K. Lee, E. J. Park, and S. N. Robinovitch, "Estimation of attitude and external acceleration using inertial sensor measurement during various dynamic conditions", IEEE Trans. Instrum. Meas., Vol. 61, No. 8, pp. 2262-2273, 2012. https://doi.org/10.1109/TIM.2012.2187245
  14. V. N. Vapnik, "An overview of statistical learning theory", IEEE Trans. Neural Networks, Vol. 10, No. 5, pp. 988-999, 1999. https://doi.org/10.1109/72.788640
  15. N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, Cambridge University Press, Cambridge, 2000.
  16. C. W. Hsu and C. J. Lin, "A comparison of methods for multiclass support vector machines", IEEE Trans. Neural Networks, Vol. 13, No. 2, pp. 415-425, 2002. https://doi.org/10.1109/72.991427
  17. A. K. Bourke, P. van de Ven, M. Gamble, R. O'Connor, K. Murphy, E. Bogan, E. McQuade, P. Finucane, G. Olaighin, and J. Nelson, "Evaluation of waist-mounted tri-axial accelerometer based fall-detection algorithms during scripted and continuous unscripted activities", J. Biomech., Vol. 43, pp. 3051-3057, 2010. https://doi.org/10.1016/j.jbiomech.2010.07.005
  18. M. Kangas, A. Konttila, P. Lindgren, I. Winblad, and T. Jamsa, "Comparison of low-complexity fall detection algorithms for body attached accelerometers", Gait & Posture, Vol. 28, pp. 285-291, 2008. https://doi.org/10.1016/j.gaitpost.2008.01.003