• Title/Summary/Keyword: guillotine cutting

Search Result 8, Processing Time 0.022 seconds

A study on the 3-stage 3-dimensional guillotine cutting-stock problem (3차원 기로틴 3단계 자재절단 방법에 관한 연구)

  • 김상열;박순달
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.276-279
    • /
    • 1996
  • This paper deals with the method providing an exact solution to the 3-dimensional guillotine cutting stock problem. We suggest a 3-stage sutting method using the property that cubic material has to be cut into 2-dimensional planes firstly. This method requires more stocks that the general guillotine cutting methods but can save work force. By using the 1-dimensional dynamic programming, we reduce the computational time and the memory requirement in the 3-stage guillotine cutting method.

  • PDF

An efficient method on two-phased guillotine cutting stock (효율적인 2단계 길로틴 평면절단 방법)

  • Kim, Sang-Youl;Park, Soon-Dal
    • IE interfaces
    • /
    • v.8 no.2
    • /
    • pp.151-159
    • /
    • 1995
  • Two-dimensional cutting stock problem is to find a waste-minimizing method of cutting a single rectangular plane into a number of smaller pieces of known dimensions. In practice, besides wastes, setup cost taken during adjusting is of an important concern. We suggest 2-phased guillotine cutting method as a solution to the problem which minimize wastes and setup costs. Also, in order to reduce the computing time we apply techniques of discretization, cutoff, median. Experimental results show good performance of our algorithm.

  • PDF

A Lagrangean Relaxation Method of Three-Dimensional Nonguillotine Cutting-Stock Problem (3차원 비길로틴 자재절단문제의 라그랑지안 완화 해법)

  • Kim, Sang-Youl;Park, Soon-Dal
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.22 no.4
    • /
    • pp.741-751
    • /
    • 1996
  • The three dimensional cutting-stock problem is to maximize the total value of pieces which are smaller cubics-cut from a original cubic stock. This paper suggests a method to maximize the total value of different size cut pieces using the orthogonal non-guillotine cut technique. We first formulated a zero-one integer programming, then developed a Lagrangeon relaxation method far the problem. The solutions were given by using a brunch-end-bound technique associates with Lagrangean relaxation, which guarantees an optimal solution.

  • PDF

A New Upper Bound for Two-Dimensional Guillotine Cutting Problem (2차원 길로틴 절단문제를 위한 새로운 상한)

  • 윤기섭;지영근;강맹규
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.24 no.62
    • /
    • pp.21-32
    • /
    • 2001
  • The two-dimensional guillotine cutting problem is to maximize sum of piece profits that cut from one stock rectangle and widely applied in the industry. The branch-and-bound method for this problem uses complementarily several upper bounds(the Gilmore and Gomoryp[8]'s two-dimensional knapsack function and the Hifi and Zissimopoulos[10]'s method using one-dimensional knapsack problem, etc) to reduce the number of searched nodes. These upper bounds has a shortcoming that does not consider the bound and layout of pieces simultaneously. In this paper, we propose an efficient upper bound which can complement the shortcoming of existing upper bounds. The proposed upper bound needs less memory spaces and computing time. Computational results show that the proposed upper bound significantly contribute to reduce the computational amount of time and number of searched nodes in tree.

  • PDF

Shape Design of Guillotined Shear Cutters for Steel Pipes (강관의 Guillotine 전단날 형상 설계)

  • Cho Haeyong;Lee Sangmin;Lee Sungkil;Kim Yongyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.105-112
    • /
    • 2005
  • The guillotined cutting process for the pipe was studied in this paper. Until now guillotining mechanism can not be practically applied in the industries because of the deformation of sheared section around cutting area, the coarse sheared surface, and the burs. To find optimum shapes of blade, several types of blade were experimentally studied. The cutting force normal to the axial direction of the pipe was compared with the theoretical result based on the cutting energy. The experimental maximum cutting forces were very good agreement with the theoretical results. It also discussed that the design parameters of guillotining system such as the blade shape and the clearance between the blade and the die made effects to the deformation of the cutting cross section area. The results show that the guillotining method can be applicable to the pipe cutting system by optimizing the blade shape and the clearance between the blade and the die of the guillotined cutting system with respect to the sheared pipe material.

Optimal Two-Section Layouts for the Two-Dimensional Cutting Problem

  • Ji, Jun;Huang, Dun-hua;Xing, Fei-fei;Cui, Yao-dong
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.271-283
    • /
    • 2021
  • When generating layout schemes, both the material usage and practicality of the cutting process should be considered. This paper presents a two-section algorithm for generating guillotine-cutting schemes of rectangular blanks. It simplifies the cutting process by allowing only one size of blanks to appear in any rectangular block. The algorithm uses an implicit enumeration and a linear programming optimal cutting scheme to maximize the material usage. The algorithm was tested on some benchmark problems in the literature, and compared with the three types of layout scheme algorithm. The experimental results show that the algorithm is effective both in computation time and in material usage.

Optimization of LCD Panel Cutting Problem Using 0-1 Mixed Integer Programming (0-1 혼합정수계획법을 이용한 LCD 패널 절단 문제 최적화)

  • Kim, Kidong;Park, Hyeon Ji;Shim, Yun-Seop;Jeon, Tae Bo
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.274-279
    • /
    • 2017
  • LCD(Liquid Crystal Display) panel cutting problem is a sort of two dimensional cutting stock problem. A cutting stock problem is problem that it minimizes the loss of the stock when a stock is cut into various parts. In the most research of the two dimensional cutting stock problem, it is supposed that the relative angle of a stock and parts is not important. Usually the angle is regarded as horizontal or perpendicular. In the manufacturing of polarizing film of LCD, the relative angle should be maintained at some specific angle because of the physical and/or chemical characteristics of raw material. We propose a mathematical model for solving this problem, a two-dimensional non-Guillotine cutting stock problem that is restricted by an arranged angle. Some example problems are solved by the C++ program using ILOG CPLEX classes. We could get the verification and validation of the suggested model based on the solutions.

Two-dimensional bin packing optimization model for mother plate design (후판 날판설계를 위한 이차원 빈패킹 최적화 기법)

  • Park Sang-Hyeok;Jang Su-Yeong
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.137-142
    • /
    • 2006
  • 제철소 후판공장에서는 두꺼운 슬라브(Slab)를 압연하여 사각형태의 철판인 날판(Mother Plate)을 생산하고, 이를 주문(Plate) 사이즈에 맞게 다시 절단을 하게 된다. 이때 동일 슬라브라 하더라도 압연방법에 따라 다양한 사이즈의 날판을 생산할 수 있다. 여기에서 다루고 있는 후판 날판설계 문제는 주어진 주문을 대상으로 최소 개수의 슬라브를 사용하여 생산하는 문제를 말한다. 이를 위해 최적의 날판 사이즈를 결정하고, 각 날판에 주문들을 배치하게 된다. 본 논문에서는 후판 날판설계문제를 two-stage guillotine cutting problem의 변이로 모델을 세우고, 이를 위한 효율적인 휴리스틱을 제시하였다. 그리고 실 데이터를 대상으로 컴퓨터 실험을 통해 휴리스틱을 효율성을 검정하였다.

  • PDF