• Title/Summary/Keyword: growth suppressor

Search Result 196, Processing Time 0.03 seconds

Identification of growth trait related genes in a Yorkshire purebred pig population by genome-wide association studies

  • Meng, Qingli;Wang, Kejun;Liu, Xiaolei;Zhou, Haishen;Xu, Li;Wang, Zhaojun;Fang, Meiying
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.4
    • /
    • pp.462-469
    • /
    • 2017
  • Objective: The aim of this study is to identify genomic regions or genes controlling growth traits in pigs. Methods: Using a panel of 54,148 single nucleotide polymorphisms (SNPs), we performed a genome-wide Association (GWA) study in 562 pure Yorshire pigs with four growth traits: average daily gain from 30 kg to 100 kg or 115 kg, and days to 100 kg or 115 kg. Fixed and random model Circulating Probability Unification method was used to identify the associations between 54,148 SNPs and these four traits. SNP annotations were performed through the Sus scrofa data set from Ensembl. Bioinformatics analysis, including gene ontology analysis, pathway analysis and network analysis, was used to identify the candidate genes. Results: We detected 6 significant and 12 suggestive SNPs, and identified 9 candidate genes in close proximity to them (suppressor of glucose by autophagy [SOGA1], R-Spondin 2 [RSPO2], mitogen activated protein kinase kinase 6 [MAP2K6], phospholipase C beta 1 [PLCB1], rho GTPASE activating protein 24 [ARHGAP24], cytoplasmic polyadenylation element binding protein 4 [CPEB4], GLI family zinc finger 2 [GLI2], neuronal tyrosine-phosphorylated phosphoinositide-3-kinase adaptor 2 [NYAP2], and zinc finger protein multitype 2 [ZFPM2]). Gene ontology analysis and literature mining indicated that the candidate genes are involved in bone, muscle, fat, and lung development. Pathway analysis revealed that PLCB1 and MAP2K6 participate in the gonadotropin signaling pathway and suggests that these two genes contribute to growth at the onset of puberty. Conclusion: Our results provide new clues for understanding the genetic mechanisms underlying growth traits, and may help improve these traits in future breeding programs.

Effect of Cyclin D2 on Cell Proliferation in T-47D Breast Cancer Cells (인체 유방암 세포에서 과다발현 시킨 Cyclin D2의 영향에 대한 연구)

  • 김현준;이근수;전상학;공구
    • Environmental Mutagens and Carcinogens
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2004
  • Three D-type cyelins (D1, D2, and D3) are expressed in G1 phase of the cell cyele and have been implicated in cell transformation and neoplasia in human and mouse. Cyclin D1 overexpression or amplification was described in various human cancers. However, there is controversy about the role of cyclin D2 in cell cyele progression and human carcinogenesis. Specially, loss of cyelin D2 is involved in a vital tumor suppressor function in normal breast tissue, and that its loss may be related to tumorigenesis. The author examined to effect over-expression of cyclin D2 on the cell proliferation, apoptosis, and cell cycle using cyclin D2 transfected stable T47D breast cancer cells to investigate whether cyclinD2 functions as a positive regulator or negative regulator in cell proliferation. Overexpression of cyclin D2 led to the suppression of cell growth in cyclin D2 transfected T47D in both in its expression level and a time dependent manner with up to 50% reduction of cell growth at 72 hours. Therefore, the authors performed the cell cycle phase analysis using the flow cytometry to investigate the effect of cyclin D2 on the cell cycle phase in cyclin D2 transfected stable T47D cells. The flow cytometry analysis revealed increased sub G0 phase in cyclin D2 transfeted cells up to 23% at 72 hours. To confirm these results induced by overexpression of cyclinD2, the apoptotic bodies were counted in control and cyclin D2 transfected T47 cells. There are markedly increases of apoptotic bodies in cyclin D2-transfected cells up to 18%. These results suggested that Cyclin D2 suppresses the cell proliferation in breast cancers cells via the induction of apotosis.

  • PDF

Induction of Cdk Inhibitor p21 and Inhibition of hTERT Expression by the Aqueous Extract of Wikyung-tang in Human Lung Carcinoma Cells (인체폐암세포의 성장에 미치는 위경장의 영향에 관한 연구)

  • Choi Hae-Yun;Park Cheol;Choi Yung Hyun;Park Dong Il
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.2
    • /
    • pp.553-560
    • /
    • 2004
  • In the present study, we investigated the anti-proliferative effects of aqueous extract of Wikyung-tang(WKT) on the growth of human lung carcinoma cell line A549. WKT treatment declined the cell viability and proliferation of A549 cells in a concentration-dependent manner. The anti-proliferative effects by WKT treatment in A549 cells was associated with morphological changes such as membrane shrinking and cell rounding up. WKT treatment induced an inhibition and/or degradation of apoptotic target proteins such poly(ADP-ribose) polymerase (PARP) and phospholipase C-γ1 (PLC-γ1). WKT treatment did not affect the levels of other Bcl-2 family gene products, such as Bcl-2, Bax and Bad. Western blot analysis and RT-PCT data revealed that the levels of tumor suppressor p53 and cyclin-dependent kinase inhibitor p21 were induced by WKT treatment in A549 cells. Additionally, WKT treatment induced the down-regulation of telomerase reverse transcriptase mRNA (hTERT) expression of A549 cells, however, the levels of other telomere-regulatory gene products were not affected. Taken together, these findings suggest that WKT-induced inhibition of human lung cancer cell proliferation is associated with the induction of apoptotic cell death via regulation of several major growth regulatory gene products and WKT may have therapeutic potential in human lung cancer.

Down-regulation of COX-2 and hTERT Expression by Healthful Decoction Utilizing Phellinus Linteus in Human Lung Carcinoma Cells (상황을 이용한 한의학적 보건기능 개선제에 의한 인체폐암세포의 증식억제에 관한 연구)

  • Park Cheol;Lee Yong Tae;Jeong Young Kee;Choi Byung Tae;Lee Sang Hyeon;Choi Yung Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.2
    • /
    • pp.500-506
    • /
    • 2004
  • The objective of the present study was to investigate the effects of aqueous extract from the healthful decoction utilizing Phellinus linteus (HDPL) on the growth of human lung carcinoma A549 cells. HDPL treatment declined the cell viability of A549 cells in a concentration-dependent manner and the anti-proliferative effects by HDPL treatment were associated with morphological changes such as membrane shrinking and cell rounding up. HDPL treatment did not affect the distribution of the cell cycle. Western blot analysis and RT-PCT data revealed that the levels of tumor suppressor p53 and cyclin-dependent kinase inhibitor p21WAF1/CIP1 in HDPL-treated A549 cells were remained unchanged. However, HDPL treatment inhibited the expression of cyclooxygenase-2 (COX-2) mRNA and protein in a concentration-dependent fashion. Additionally, the expression of human telomerase reverse transcriptase (hTERT), a main determinant of the telomerase enzymatic activity, was progressively down-regulated by HDPL treatment. Taken together, these findings suggest that HDPL-induced inhibition of human lung cancer cell proliferation is associated with the inhibition of several major growth regulatory gene products, such as COX-2 and hTERT, and HDPL may have therapeutic potential in human lung cancer.

Gomisin G Inhibits the Growth of Triple-Negative Breast Cancer Cells by Suppressing AKT Phosphorylation and Decreasing Cyclin D1

  • Maharjan, Sony;Park, Byoung Kwon;Lee, Su In;Lim, Yoonho;Lee, Keunwook;Kwon, Hyung-Joo
    • Biomolecules & Therapeutics
    • /
    • v.26 no.3
    • /
    • pp.322-327
    • /
    • 2018
  • A type of breast cancer with a defect in three molecular markers such as the estrogen receptor, progesterone receptor, and human epidermal growth factor receptor is called triple-negative breast cancer (TNBC). Many patients with TNBC have a lower survival rate than patients with other types due to a poor prognosis. In this study, we confirmed the anti-cancer effect of a natural compound, Gomisin G, in TNBC cancer cells. Treatment with Gomisin G suppressed the viability of two TNBC cell lines, MDA-MB-231 and MDA-MB-468 but not non-TNBC cell lines such as MCF-7, T47D, and ZR75-1. To investigate the molecular mechanism of this activity, we examined the signal transduction pathways after treatment with Gomisin G in MDA-MB-231 cells. Gomisin G did not induce apoptosis but drastically inhibited AKT phosphorylation and reduced the amount of retinoblastoma tumor suppressor protein (Rb) and phosphorylated Rb. Gomisin G induced in a proteasome-dependent manner a decrease in Cyclin D1. Consequently, Gomisin G causes cell cycle arrest in the G1 phase. In contrast, there was no significant change in T47D cells except for a mild decrease in AKT phosphorylation. These results show that Gomisin G has an anti-cancer activity by suppressing proliferation rather than inducing apoptosis in TNBC cells. Our study suggests that Gomisin G could be used as a therapeutic agent in the treatment of TNBC patients.

RASAL1 Attenuates Gastric Carcinogenesis in Nude Mice by Blocking RAS/ERK Signaling

  • Chen, Hong;Zhao, Ji-Yi;Qian, Xu-Chen;Cheng, Zheng-Yuan;Liu, Yang;Wang, Zhi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.3
    • /
    • pp.1077-1082
    • /
    • 2015
  • Recent studies have suggested that the RAS protein activator like-1 (RASAL1) functions as a tumor suppressor in vitro and may play an important role in the development of gastric cancer. However, whether or not RASAL1 suppresses tumor growth in vivo remains to be determined. In the present study, we investigated the role of RASAL1 in gastric carcinogenesis using an in vivo xenograft model. A lentiviral RASAL1 expression vector was constructed and utilized to transfect the human poorly differentiated gastric adenocarcinoma cell line, BGC-823. RASAL1 expression levels were verified by quantitative real-time RT-PCR and Western blotting analysis. Then, we established the nude mice xenograft model using BGC-823 cells either over-expressing RASAL1 or normal. After three weeks, the results showed that the over-expression of RASAL1 led to a significant reduction in both tumor volume and weight compared with the other two control groups. Furthermore, in xenograft tissues the increased expression of RASAL1 in BGC-823 cells caused decreased expression of p-ERK1/2, a downstream moleculein the RAS/RAF/MEK/ERK signal pathway. These findings demonstrated that the over-expression of RASAL1 could inhibit the growth of gastric cancer by inactivation of the RAS/RAF/MEK/ERK pathway in vivo. This study indicates that RASAL1 may attenuate gastric carcinogenesis.

Growth Inhibition of Human Lung Carcinoma Cells by ${\beta}>-lapachone$ through Induction of Apoptosis (Tabebuia avellanedae에서 유래된 ${\beta}>-lapachone$의 인체폐암세포 apoptosis 유발에 관한 연구)

  • Choi, Byung-Tae;Lee, Yong-Tae;Choi, Yung-Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.3
    • /
    • pp.722-728
    • /
    • 2005
  • The DNA topoismerase I inhibitor ${\beta}-lapachone$, the product of a lapacho tree (Tabebuia avellanedae) from South America, activates a novel apoptotic response in a number of cell lines. In the present report, we investigated the effects of ${\beta}-lapachone$ on the growth of human lung in human non-small-cell-lung-cancer A549 cells. Upon treatment with ${\beta}-lapachone$, a concentration-dependent inhibition of cell viability and cell proliferation was observed as measured by hemocytometer counts and MTT assay. The ${\beta}-lapachone-treated$ cells developed many of the hallmark features of apoptosis, including membrane shrinking, condensation of chromatin and DNA fragmentation. These apoptotic effects of ${\beta}-lapachone$ in A549 cells were associated with a marked induction of pro-apoptotic Bax expression, however the levels of anti-apoptotic Bcl-2 expression were decreased in a dose-dependent manner. Accordingly, elevated amount of cyclin-dependent kinase inhibitor p21 expression accompanied by up-regulation of tumor suppressor p53 was observed. By RT-PCR analyses, decrease in gene expression level of telomerase reverse transcriptase and telomeric repeat binding factor were also observed. Thus, these findings suggest that ${\beta}-lapachone$ may be a potential anti-cancer therapeutics for the control of human lung cancer cell model.

Estrogen receptor β promotes bladder cancer growth and invasion via alteration of miR-92a/DAB2IP signals

  • Ou, Zhenyu;Wang, Yongjie;Chen, Jinbo;Tao, Le;Zuo, Li;Sahasrabudhe, Deepak;Joseph, Jean;Wang, Long;Yeh, Shuyuan
    • Experimental and Molecular Medicine
    • /
    • v.50 no.11
    • /
    • pp.10.1-10.11
    • /
    • 2018
  • Although early studies suggested that bladder cancer (BCa) is more prevalent in men than in women, muscle-invasive rates are higher in women than in men, suggesting that sex hormones might play important roles in different stages of BCa progression. In this work, we found that estrogen receptor beta ($ER{\beta}$) could increase BCa cell proliferation and invasion via alteration of miR-92a-mediated DAB2IP (DOC-2/DAB2 interacting protein) signals and that blocking miR-92a expression with an inhibitor could partially reverse $ER{\beta}$-enhanced BCa cell growth and invasion. Further mechanism dissection found that $ER{\beta}$ could increase miR-92a expression at the transcriptional level via binding to the estrogen-response-element (ERE) on the 5' promoter region of its host gene C13orf25. The $ER{\beta}$ up-regulated miR-92a could decrease DAB2IP tumor suppressor expression via binding to the miR-92a binding site located on the DAB2IP 3' UTR. Preclinical studies using an in vivo mouse model also confirmed that targeting this newly identified $ER{\beta}$/miR-92a/DAB2IP signal pathway with small molecules could suppress BCa progression. Together, these results might aid in the development of new therapies via targeting of this $ER{\beta}$-mediated signal pathway to better suppress BCa progression.

LncRNA-IMAT1 Promotes Invasion of Meningiomas by Suppressing KLF4/hsa-miR22-3p/Snai1 Pathway

  • Ding, Yaodong;Ge, Yu;Wang, Daijun;Liu, Qin;Sun, Shuchen;Hua, Lingyang;Deng, Jiaojiao;Luan, Shihai;Cheng, Haixia;Xie, Qing;Gong, Ye;Zhang, Tao
    • Molecules and Cells
    • /
    • v.45 no.6
    • /
    • pp.388-402
    • /
    • 2022
  • Malignant meningiomas often show invasive growth that makes complete tumor resection challenging, and they are more prone to recur after radical resection. Invasive meningioma associated transcript 1 (IMAT1) is a long noncoding RNA located on Homo sapiens chromosome 17 that was identified by our team based on absolute expression differences in invasive and non-invasive meningiomas. Our studies indicated that IMAT1 was highly expressed in invasive meningiomas compared with non-invasive meningiomas. In vitro studies showed that IMAT1 promoted meningioma cell invasion through the inactivation of the Krüppel-like factor 4 (KLF4)/hsa-miR22-3p/Snai1 pathway by acting as a sponge for hsa-miR22-3p, and IMAT1 knockdown effectively restored the tumor suppressive properties of KLF4 by preserving its tumor suppressor pathway. In vivo experiments confirmed that IMAT1 silencing could significantly inhibit the growth of subcutaneous tumors and prolong the survival period of tumor-bearing mice. Our findings demonstrated that the high expression of IMAT1 is the inherent reason for the loss of the tumor suppressive properties of KLF4 during meningioma progression. Therefore, we believe that IMAT1 may be a potential biological marker and treatment target for meningiomas.

Arctigenin induces caspase-dependent apoptosis in FaDu human pharyngeal carcinoma cells

  • Kang, Kyeong-Rok;Kim, Jae-Sung;Lim, HyangI;Seo, Jeong-Yeon;Park, Jong-Hyun;Chun, Hong Sung;Yu, Sun-Kyoung;Kim, Heung-Joong;Kim, Chun Sung;Kim, Do Kyung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.6
    • /
    • pp.447-456
    • /
    • 2022
  • The present study was carried out to investigate the effect of Arctigenin on cell growth and the mechanism of cell death elicited by Arctigenin were examined in FaDu human pharyngeal carcinoma cells. To determine the apoptotic activity of Arctigenin in FaDu human pharyngeal carcinoma cells, cell viability assay, DAPI staining, caspase activation analysis, and immunoblotting were performed. Arctigenin inhibited the growth of cells in a dose-dependent manner and induced nuclear condensation and fragmentation. Arctigenin-treated cells showed caspase-3/7 activation and increased apoptosis versus control cells. FasL, a death ligand associated with extrinsic apoptotic signaling pathways, was up-regulated by Arctigenin treatment. Moreover, caspase-8, a part of the extrinsic apoptotic pathway, was activated by Arctigenin treatments. Expressions of anti-apoptotic factors such as Bcl-2 and Bcl-xL, components of the mitochondria-dependent intrinsic apoptosis pathway, significantly decreased following Arctigenin treatment. The expressions of pro-apoptotic factors such as BAX, BAD and caspase-9, and tumor suppressor -53 increased by Arctigenin treatments. In addition, Arctigenin activated caspase-3 and poly (ADP-ribose) polymerase (PARP) induced cell death. Arctigenin also inhibited the proliferation of FaDu cells by the suppression of p38, NF-κB, and Akt signaling pathways. These results suggest that Arctigenin may inhibit cell proliferation and induce apoptotic cell death in FaDu human pharyngeal carcinoma cells through both the mitochondria-mediated intrinsic pathway and the death receptor-mediated extrinsic pathway.