DOI QR코드

DOI QR Code

Estrogen receptor β promotes bladder cancer growth and invasion via alteration of miR-92a/DAB2IP signals

  • Ou, Zhenyu (Departments of Urology and Plastic Surgery, Xiangya Hospital, Central South University) ;
  • Wang, Yongjie (Departments of Urology and Plastic Surgery, Xiangya Hospital, Central South University) ;
  • Chen, Jinbo (Departments of Urology and Plastic Surgery, Xiangya Hospital, Central South University) ;
  • Tao, Le (Departments of Urology and Pathology, University of Rochester Medical Center) ;
  • Zuo, Li (Department of Urology, Changzhou No. 2 People's Hospital Affiliated to Nanjing Medical University) ;
  • Sahasrabudhe, Deepak (Departments of Medicine, University of Rochester Medical Center) ;
  • Joseph, Jean (Departments of Urology and Pathology, University of Rochester Medical Center) ;
  • Wang, Long (Departments of Urology and Plastic Surgery, Xiangya Hospital, Central South University) ;
  • Yeh, Shuyuan (Departments of Urology and Pathology, University of Rochester Medical Center)
  • Received : 2017.12.22
  • Accepted : 2018.05.29
  • Published : 2018.11.30

Abstract

Although early studies suggested that bladder cancer (BCa) is more prevalent in men than in women, muscle-invasive rates are higher in women than in men, suggesting that sex hormones might play important roles in different stages of BCa progression. In this work, we found that estrogen receptor beta ($ER{\beta}$) could increase BCa cell proliferation and invasion via alteration of miR-92a-mediated DAB2IP (DOC-2/DAB2 interacting protein) signals and that blocking miR-92a expression with an inhibitor could partially reverse $ER{\beta}$-enhanced BCa cell growth and invasion. Further mechanism dissection found that $ER{\beta}$ could increase miR-92a expression at the transcriptional level via binding to the estrogen-response-element (ERE) on the 5' promoter region of its host gene C13orf25. The $ER{\beta}$ up-regulated miR-92a could decrease DAB2IP tumor suppressor expression via binding to the miR-92a binding site located on the DAB2IP 3' UTR. Preclinical studies using an in vivo mouse model also confirmed that targeting this newly identified $ER{\beta}$/miR-92a/DAB2IP signal pathway with small molecules could suppress BCa progression. Together, these results might aid in the development of new therapies via targeting of this $ER{\beta}$-mediated signal pathway to better suppress BCa progression.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Sievert, K. D. et al. Economic aspects of bladder cancer: what are the benefits and costs? World J. Urol. 27, 295-300 (2009). https://doi.org/10.1007/s00345-009-0395-z
  2. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin. 68, 7-30 (2018). https://doi.org/10.3322/caac.21442
  3. Hsu, I., Vitkus, S., Da, J. & Yeh, S. Role of oestrogen receptors in bladder cancer development. Nat. Rev. Urol. 10, 317-326 (2013). https://doi.org/10.1038/nrurol.2013.53
  4. Hsu, I. et al. Estrogen receptor alpha prevents bladder cancer via INPP4B inhibited akt pathway in vitro and in vivo. Oncotarget 5, 7917-7935 (2014).
  5. Hsu, I. et al. Suppression of ERbeta signaling via ERbeta knockout or antagonist protects against bladder cancer development. Carcinogenesis 35, 651-661 (2014). https://doi.org/10.1093/carcin/bgt348
  6. Yang H., Fang F., Chang R., Yang L. MicroRNA-140-5p suppresses tumor growth and metastasis by targeting TGFBR1 and FGF9 in hepatocellular carcinoma. Hepatology. 58, 205-217 (2013).
  7. Liu X., et al. Regulation of microRNAs by epigenetics and their interplay involved in cancer. J. Exp. Clin. Cancer Res. 32, 96 (2013). https://doi.org/10.1186/1756-9966-32-96
  8. Zhang S., et al. MicroRNA-24 upregulation inhibits proliferation, metastasis and induces apoptosis in bladder cancer cells by targeting CARMA3. Int. J. Oncol. 47,1351-1360 (2015). https://doi.org/10.3892/ijo.2015.3117
  9. Barbato, S., Solaini, G. & Fabbri, M. MicroRNAs in oncogenesis and tumor suppression. Int. Rev. Cell. Mol. Biol. 333, 229-268 (2017).
  10. Paris, O. et al. Direct regulation of microRNA biogenesis and expression by estrogen receptor beta in hormone-responsive breast cancer. Oncogene 31, 4196-4206 (2012). https://doi.org/10.1038/onc.2011.583
  11. Zhou, J. et al. Loss of DAB2IP in RCC cells enhances their growth and resistance to mTOR-targeted therapies. Oncogene 35, 4663-4674 (2016). https://doi.org/10.1038/onc.2016.4
  12. Liao, H. et al. microRNA-32 induces radioresistance by targeting DAB2IP and regulating autophagy in prostate cancer cells. Oncol. Lett. 10, 2055-2062 (2015). https://doi.org/10.3892/ol.2015.3551
  13. Liu, L., Xu, C., Hsieh, J. T., Gong, J. & Xie, D. DAB2IP in cancer. Oncotarget 7, 3766-3776 (2016).
  14. Zhang, X. et al. Low expression of DAB2IP contributes to malignant development and poor prognosis in hepatocellular carcinoma. J. Gastroenterol. Hepatol. 27, 1117-1125 (2012). https://doi.org/10.1111/j.1440-1746.2011.07049.x
  15. Wu, K. et al. DAB2IP regulates the chemoresistance to pirarubicin and tumor recurrence of non-muscle invasive bladder cancer through STAT3/Twist1/Pglycoprotein signaling. Cell. Signal. 27, 2515-2523 (2015). https://doi.org/10.1016/j.cellsig.2015.09.014
  16. Shen, Y. J. et al. Downregulation of DAB2IP results in cell proliferation and invasion and contributes to unfavorable outcomes in bladder cancer. Cancer Sci. 105, 704-712 (2014). https://doi.org/10.1111/cas.12407
  17. Ou, Z. et al. Tumor microenvironment B cells increase bladder cancer metastasis via modulation of the IL-8/androgen receptor (AR)/MMPs signals. Oncotarget 6, 26065-26078 (2015).
  18. Yoshino, H. et al. Aberrant expression of microRNAs in bladder cancer. Nat. Rev. Urol. 10, 396-404 (2013). https://doi.org/10.1038/nrurol.2013.113
  19. Ghildiyal M, Zamore PD. Small silencing RNAs: an expanding universe. Nat. Rev. Genet. 10, 94-108 (2009). https://doi.org/10.1038/nrg2504
  20. Vlachos, I. S. et al. DIANA-TarBasev7.0: indexing more than half a million experimentally supported miRNA:mRNA interactions. Nucleic Acids Res. 43, D153-D159 (2015). https://doi.org/10.1093/nar/gku1215
  21. Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1 (2013).
  22. Sonpavde, G. et al. Efficacy of selective estrogen receptor modulators in nude mice bearing human transitional cell carcinoma. Urology 69, 1221-1226 (2007). https://doi.org/10.1016/j.urology.2007.02.041
  23. Miyamoto, H. et al. Expression of androgen and oestrogen receptors and its prognostic significance in urothelial neoplasm of the urinary bladder. BJU Int. 109, 1716-1726 (2012). https://doi.org/10.1111/j.1464-410X.2011.10706.x
  24. Rao Q. et al. Recruited mast cells in the tumor microenvironment enhance bladder cancer metastasis via modulation of ER${\beta}$/CCL2/CCR2 EMT/MMP9 signals. Oncotarget. 7, 7842-7855 (2016).
  25. Tao L. et al. Recruited T cells promote the bladder cancer metastasis via up-regulation of the estrogen receptor ${\beta}$/IL-1/c-MET signals. Cancer Lett. 430, 215-223(2018). https://doi.org/10.1016/j.canlet.2018.03.045
  26. Catto, J. W. et al. Distinct microRNA alterations characterize high- and lowgrade bladder cancer. Cancer Res. 69, 8472-8481 (2009). https://doi.org/10.1158/0008-5472.CAN-09-0744
  27. Xiong Y. et al. The Long Non-Coding RNA XIST Interacted with MiR-124 to Modulate Bladder Cancer Growth, Invasion and Migration by Targeting Androgen Receptor (AR). Cell Physiol Biochem. 43, 405-418 (2017). https://doi.org/10.1159/000480419
  28. Guancial, E. A., Bellmunt, J., Yeh, S., Rosenberg, J. E. & Berman, D. M. The evolving understanding of microRNA in bladder cancer. Urol. Oncol. 32, 41 e31-e40 (2014). https://doi.org/10.1016/j.urolonc.2013.04.014
  29. Ota, A. et al. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res. 64, 3087-3095 (2004). https://doi.org/10.1158/0008-5472.CAN-03-3773
  30. Lin, H. Y., Chiang, C. H. & Hung, W. C. STAT3 upregulates miR-92a to inhibit RECK expression and to promote invasiveness of lung cancer cells. Br. J. Cancer 109, 731-738 (2013). https://doi.org/10.1038/bjc.2013.349
  31. Shigoka, M. et al. Deregulation of miR-92a expression is implicated in hepatocellular carcinoma development. Pathol. Int. 60, 351-357 (2010). https://doi.org/10.1111/j.1440-1827.2010.02526.x
  32. Chen, H., Tu, S. W. & Hsieh, J. T. Down-regulation of human DAB2IP gene expression mediated by polycomb Ezh2 complex and histone deacetylase in prostate cancer. J. Biol. Chem. 280, 22437-22444 (2005). https://doi.org/10.1074/jbc.M501379200
  33. Zhang, T., Shen, Y., Chen, Y., Hsieh, J. T. & Kong, Z. The ATM inhibitor KU55933 sensitizes radioresistant bladder cancer cells with DAB2IP gene defect. Int. J. Radiat. Biol. 91, 368-378 (2015).

Cited by

  1. ERα-mediated alterations in circ_0023642 and miR-490-5p signaling suppress bladder cancer invasion vol.10, pp.9, 2018, https://doi.org/10.1038/s41419-019-1827-3
  2. Identification and analysis of long non-coding RNA related miRNA sponge regulatory network in bladder urothelial carcinoma vol.19, pp.1, 2019, https://doi.org/10.1186/s12935-019-1052-2
  3. Exosomal miR-92a Concentration in the Serum of Shift Workers vol.10, pp.2, 2018, https://doi.org/10.3390/app10020430
  4. Molecular Mechanisms of the Anti-Cancer Effects of Isothiocyanates from Cruciferous Vegetables in Bladder Cancer vol.25, pp.3, 2018, https://doi.org/10.3390/molecules25030575
  5. Targeting the ERβ/Angiopoietin-2/Tie-2 signaling-mediated angiogenesis with the FDA-approved anti-estrogen Faslodex to increase the Sunitinib sensitivity in RCC vol.11, pp.5, 2018, https://doi.org/10.1038/s41419-020-2486-0
  6. Perspectives on the Role of Non-Coding RNAs in the Regulation of Expression and Function of the Estrogen Receptor vol.12, pp.8, 2018, https://doi.org/10.3390/cancers12082162
  7. Cutting the Brakes on Ras—Cytoplasmic GAPs as Targets of Inactivation in Cancer vol.12, pp.10, 2020, https://doi.org/10.3390/cancers12103066
  8. An overview on precision therapy in bladder cancer vol.5, pp.5, 2018, https://doi.org/10.1080/23808993.2020.1801346
  9. Development of a 15-Gene Signature Model as a Prognostic Tool in Sex Hormone-Dependent Cancers vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/3676107
  10. The Role of Estrogen Receptors in Urothelial Cancer vol.12, pp.None, 2018, https://doi.org/10.3389/fendo.2021.643870
  11. Association Between Estrogen Receptors and GATA3 in Bladder Cancer: A Systematic Review and Meta-Analysis of Their Clinicopathological Significance vol.12, pp.None, 2021, https://doi.org/10.3389/fendo.2021.684140
  12. Endocrine-disrupting effects of bisphenols on urological cancers vol.195, pp.None, 2021, https://doi.org/10.1016/j.envres.2020.110485
  13. Sex Hormone Receptor Signaling in Bladder Cancer: A Potential Target for Enhancing the Efficacy of Conventional Non-Surgical Therapy vol.10, pp.5, 2021, https://doi.org/10.3390/cells10051169
  14. The Inequality of Females in Bladder Cancer vol.129, pp.12, 2018, https://doi.org/10.1111/apm.13183