• Title/Summary/Keyword: growth simulation

Search Result 1,085, Processing Time 0.023 seconds

A numerical simulation of radiative heat transfer coupled with Czochralski flow in cusp magnetic field (복사열전달을 고려한 Cusp 자기장이 있는 초크랄스키 단결정 성장 공정의 유동에 관한 연구)

  • Kim, Tae-Ho;Lee, You-Seop;Chun,Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.3
    • /
    • pp.988-1004
    • /
    • 1996
  • The characteristics of flow and oxygen concentration are numerically studied in Czochralski 8" silicon crystal growing process considering radiative heat transfer. The analysis of net radiative heat flux on all relevant surfaces shows growing crystal affects the heater power. Furthermore, the variation of the radiative heat flux along the crystal surface in the growing direction is confirmed and should be a cause of thermal stress and defect of the crystal. The calculated distributions of temperature and, heat flux along the wall boundaries including melt/crystal interface, free surface and crucible wall indicate that the frequently used assumption of the thermal boundary conditions of insulated crucible bottom and constant temperature at crucible side wall is not suitable to meet the real physical boundary conditions. It is necessary, therefore, to calculate radiative heat transfer simultaneously with the melt flow in order to simulate the real CZ crystal growth. If only natural convection is considered, the oxygen concentration on the melt/crystal interface decreases and becomes uniform by the application of a cusp magnetic filed. The heater power needed also increases with increasing the magnetic field. For the case of counter rotation of the crystal and crucible, the magnetic field suppresses azimutal flow produced by the crucible rotation, which results in the higher oxygen concentration near the interface.

Comparison of Remote Sensing and Crop Growth Models for Estimating Within-Field LAI Variability

  • Hong, Suk-Young;Sudduth, Kenneth-A.;Kitchen, Newell-R.;Fraisse, Clyde-W.;Palm, Harlan-L.;Wiebold, William-J.
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.3
    • /
    • pp.175-188
    • /
    • 2004
  • The objectives of this study were to estimate leaf area index (LAI) as a function of image-derived vegetation indices, and to compare measured and estimated LAI to the results of crop model simulation. Soil moisture, crop phenology, and LAI data were obtained several times during the 2001 growing season at monitoring sites established in two central Missouri experimental fields, one planted to com (Zea mays L.) and the other planted to soybean (Glycine max L.). Hyper- and multi-spectral images at varying spatial. and spectral resolutions were acquired from both airborne and satellite platforms, and data were extracted to calculate standard vegetative indices (normalized difference vegetative index, NDVI; ratio vegetative index, RVI; and soil-adjusted vegetative index, SAVI). When comparing these three indices, regressions for measured LAI were of similar quality $(r^2$ =0.59 to 0.61 for com; $r^2$ =0.66 to 0.68 for soybean) in this single-year dataset. CERES(Crop Environment Resource Synthesis)-Maize and CROPGRO-Soybean models were calibrated to measured soil moisture and yield data and used to simulate LAI over the growing season. The CERES-Maize model over-predicted LAI at all corn monitoring sites. Simulated LAI from CROPGRO-Soybean was similar to observed and image-estimated LA! for most soybean monitoring sites. These results suggest crop growth model predictions might be improved by incorporating image-estimated LAI. Greater improvements might be expected with com than with soybean.

A study on development of reaction rate equation for reactive flow simulation in energetic materials (고에너지 물질의 연소반응 해석을 위한 반응속도식 개발 및 정의에 관한 연구)

  • Kim, Bo-Hoon;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.331-341
    • /
    • 2012
  • A modified Ignition and Growth(I&G) model which is necessary to simulate the combustion phenomena of energetic materials and an analytical model determining the unknown parameters of the reaction rate equation are proposed. The modified I&G model sustains important physical implications with overcoming some problems of previous rate equations. This rate model consist of Ignition term which represent the formation of the hotspot due to void collapse and Growth term which means the shock to detonation transition phenomena. Also, the theoretical model is used to investigate the combustion characteristics of certain energetic materials before running Hydrocode by pre-determination of unknown parameter, b, G, x, I. The analytical model provides efficient and highly accurate results rather than previous method which simulated the unconfined-rate-stick via the numerical means.

  • PDF

Lower body shape classification of adolescent men's students

  • Cha, Su-Joung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.9
    • /
    • pp.97-105
    • /
    • 2018
  • The purpose of this study was to analyze the measurement data of 13 ~ 18 year old male students and to characterize the body shape of the lower body, Through this, I tried to provide basic data for the production of pants for adolescent men's students. As a result of analyzing the body shape factor of the lower half, two factors were classified. 'Vertical factor' of the lower body composed of the circumference, thickness, and width, and the 'horizontal factor' of the lower body composed of the length and height. The body shape of the lower half was classified into four categories according to the circumference and length of the lower half of the male students, such as 'short bird legs', 'long crane legs', 'short pillar' and 'long pillar'. In the study of Hong Eun-hee (2005), body type was classified according to horizontal factor and vertical factor like this study. By age, boys aged 13 to 14 can see that the lower body is thin and short, the lower body is thin and long body is 15-16 years old, and the lower body is relatively thick and long body is 17-18 years old. As the age increases, the growth in the vertical direction occurs first and the growth in the horizontal direction occurs. It is thought that it is necessary to set a different amount of allowance for setting the length and the circumference according to the age of the youth. When the age is young, the amount of allowance in the circumferential direction should be increased, and the amount of allowance in the longitudinal direction after 15 years of age should be increased more than other age groups.

Figure of merit and bending characteristics of Mn-SnO2/Ag/Mn-SnO2 tri-layer film (Mn-SnO2/Ag/Mn-SnO2 3중 다층막의 성능지수와 밴딩 특성)

  • Cho, Youngsoo;Jang, Guneik
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.4
    • /
    • pp.190-195
    • /
    • 2021
  • Typical Mn-SnO2/Ag/Mn-SnO2 tri-layer films were prepared on a PET substrate by RF/DC magnetron sputtering method at room temperature. Based on EMP simulation, the thicknesses of the top and bottom Mn-doped SnO2 layers were kept at 40 nm and the Ag layer was maintained at 13 nm for continuous electrical conduction. The experimentally measured optical transmittances at 550 nm wavelength were ranged from 82.9 to 88.1 % and sheet resistances were varied from 5.9 to 6.9 Ω/☐. The highest value of figure of merit, ϕTC was 48.1 × 10-3 Ω-1. Based on bending test under 4 and 5 mm of inner and outer curvature radius condition, tri-layer film resistance varies only by approximately 1.5 % after 10,000 bending cycles, showing excellent mechanical flexibility.

Analysis of Microcystis Bloom in Daecheong Reservoir using ELCOM-CAEDYM (ELCOM-CAEDYM을 이용한 대청호 Microcystis Bloom 해석)

  • Chung, Se Woong;Lee, Heung Soo
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.73-87
    • /
    • 2011
  • An abnormal mono-specific bloom of the cyanobacterium Microcystis aeruginosa had developed at a specific location (transitional zone, monitoring station of Hoenam) in Daecheong Reservoir from middle of July to early August, 2001. The maximum cell counts during the peak bloom reached 1,477,500 cells/mL, which was more than 6~10 times greater than those at other monitoring sites. The hypothesis of this study is that the timing and location of the algal bloom was highly correlated with the local environmental niche that was controled by physical processes such as hydrodynamic mixing and pollutant transport in the reservoir. A three-dimensional, coupled hydrodynamic and ecological model, ELCOM-CAEDYM, was applied to the period of development and subsequent decline of the bloom. The model was calibrated against observed water temperature profiles and water quality variables for different locations, and applied to reproduce the algal bloom event and justify the limiting factor that controled the Microcystis bloom at R3. The simulation results supported the hypothesis that the phosphorus loading induced from a contaminated tributary during several runoff events are closely related to the rapid growth of Microcystis during the period of bloom. Also the physical environments of the reservoir such as a strong thermal stratification and weak wind velocity conditions provided competitive advantage to Microcystis given its light adaptation capability. The results show how the ELCOM-CAEDYM captures the complex interactions between the hydrodynamic and biogeochemical processes, and the local environmental niche that is preferable for cyanobacterial species growth.

Experimental and numerical study on the stability of slurry shield tunneling in circular-gravel layer with different cover-span ratios

  • Liu, Xinrong;Liu, Dongshuang;Xiong, Fei;Han, Yafeng;Liu, Ronghan;Meng, Qingjun;Zhong, Zuliang;Chen, Qiang;Weng, Chengxian;Liu, Wenwu
    • Geomechanics and Engineering
    • /
    • v.28 no.3
    • /
    • pp.265-281
    • /
    • 2022
  • A set of slurry shield test system capable of cutter cutting and slurry automatic circulation is used to investigate the deformation characteristics, the evolution characteristics of support resistance and the distribution and evolution process of earth pressure during excavating and collapsing of slurry shield tunneling in circular-gravel layer. The influence of cover-span ratio on surface subsidence, support resistance and failure mode of excavation face is also discussed. Three-dimensional numerical calculations are performed to verify the reliability of the test results. The results show that, with the decrease of the supporting force of the excavation face, the surface subsidence goes through four stages: insensitivity, slow growth, rapid growth and stability. The influence of shield excavation on the axial earth pressure of the front soil is greater than that of the vertical earth pressure. When the support resistance of the excavation face decreases to the critical value, the soil in front of the excavation face collapses. The shape of the collapse is similar to that of a bucket. The ultimate support resistance increase with the increase of the cover-span ratio, however, the angle between the bottom of the collapsed body and the direction of the tunnel excavation axis when the excavation face is damaged increase first and then becomes stable. The surface settlement value and the range of settlement trough decrease with the increase of cover-span ratio. The numerical results are basically consistent with the model test results.

Quasi-brittle and Brittle Fracture Simulation Using Phase-field Method based on Cell-based Smoothed Finite Element Method (셀기반 평활화 유한요소법에 기반한 위상분야법을 이용한 준취성 및 취성 파괴 시뮬레이션)

  • Changkye Lee;Sundararajan Natarajan;Jurng-Jae Yee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.5
    • /
    • pp.295-305
    • /
    • 2023
  • This study introduces a smoothed finite-element implementation into the phase-field framework. In recent years, the phase-field method has recieved considerable attention in crack initiation and propagation since the method needs no further treatment to express the crack growth path. In the phase-field method, high strain-energy accuracy is needed to capture the complex crack growth path; thus, it is obtained in the framework of the smoothed finite-element method. The salient feature of the smoothed finite-element method is that the finite element cells are divided into sub-cells and each sub-cell is rebuilt as a smoothing domain where smoothed strain energy is calculated. An adaptive quadtree refinement is also employed in the present framework to avoid the computational burden. Numerical experiments are performed to investigate the performance of the proposed approach, compared with that of the finite-element method and the reference solutions.

Design of lattice structure for controlling elastic modulus in metal additive manufacturing (금속 적층제조에서의 격자구조 설계변수에 따른 탄성계수 분석)

  • In Yong Moon;Yeonghwan Song
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.276-281
    • /
    • 2023
  • With the high design freedom of the additive manufacturing process, there is a growing interest in multi-dimensional lattice structures among researchers, who are studying intricate structural modeling that is challenging to produce using conventional manufacturing processes. In the case of titanium alloy implants for human insertion, a multi-dimensional lattice structure is employed to ensure compatibility with bones, adjusting strength and elastic modulus to levels similar to those of bones. Therefore, securing a database on the mechanical properties based on lattice structure design variables and the development of related simulation techniques are believed to efficiently facilitate the customization of implants. In this study, lattice structures were additively manufactured using Ti-6Al-4V alloy, and the elastic modulus was measured based on design parameters. The results were compared with simulations, and an approach to finite element analysis for accurate prediction of the elastic modulus was proposed.

Performance Evaluation of the Capillary Tube Radiant Floor Cooling & Heating System (모세유관 바닥복사 냉·난방 시스템의 성능평가)

  • Seo, Yu-jin;Kim, Taeyeon;Leigh, Seung-bok
    • KIEAE Journal
    • /
    • v.12 no.4
    • /
    • pp.89-95
    • /
    • 2012
  • At present, many countries are trying to reduce green gas emissions to mitigate the effects of these gases on climate change. Year after year, there have been efforts to cut energy use for heating and cooling. Heating and cooling systems, common in all forms of housing, are increasing due to the constant supply of new housing resulting from improvements in economic growth and the quality of life. Thus, studies related to the design of cooling and heating systems to improve energy efficiency are expanding. Among the new designs, radiant floor cooling and heating systems which use capillary tubes are becoming viable means of reducing energy use. Radiant floor cooling and heating systems which use capillary tubes are creative and sustainable systems in which cool and hot water is circulated into capillary tube which has small diameter. In this study, the cooling and heating performance of this type of capillary tube system is investigated in an experimental study and a simulation using TRNSYS. The results of the experimental study show that under a peak load, a capillary tube radiant floor cooling system using geothermal energy can achieve desired indoor temperature without an additional heat source. The set room air temperature is maintained while the floor surface temperature, PMV and PPD remain within the comfort range. Also, this system is more economic than a packaged air conditioner system due to its higher COP. The results of the simulation show that the capillary tube radiant floor heating system maintains set temperature more stable than a PB pipe radiant floor heating system due to its lower supply temperature of hot water. In terms of energy consumption, the capillary tube radiant floor heating system is more efficient than the PB pipe radiant floor heating system.