• 제목/요약/키워드: growth of fungi

검색결과 1,091건 처리시간 0.027초

Distribution and Antifungal Activity of Endophytic Fungi in Different Growth Stages of Chili Pepper (Capsicum annuum L.) in Korea

  • Paul, Narayan Chandra;Deng, Jian Xin;Sang, Hyun-Kyu;Choi, Young-Phil;Yu, Seung-Hun
    • The Plant Pathology Journal
    • /
    • 제28권1호
    • /
    • pp.10-19
    • /
    • 2012
  • This study investigated the distribution of endophytic fungi obtained from the surface sterilized tissues of leaves, stems and roots of chili pepper ($Capsicum$ $annuum$ L.) plants in seedling, flowering and fruiting stages in Korea and their antifungal activity. A total of 481 isolates were recovered and were identified using molecular techniques. Based on rDNA ITS gene sequence and phylogenetic analysis, 21 fungal genera were characterized, belonging to 16 Ascomycota and 5 Basidiomycota. $Penicillium$ in seedling stage, $Fusarium$ in flowering stage, $Colletotrichum$ followed by $Fusarium$, $Alternaria$ and $Xylaria$ in fruiting stage was predominant and $Alternaria$, $Cladosporium$ and $Fusarium$ were common in all growth stages. Among 481 endophytes 90 phenotypes were evaluated for the antimicrobial activity against three major pathogens ($Phytophthora$ $capsici$, $Colletotrichum$ $acutatum$ and $Fusarium$ $oxysporum$) of chili pepper. Among them 16 isolates inhibited the growth of at least one test microorganisms. Three strains showed a broad spectrum antifungal activity and displayed strong inhibition against chili pepper pathogenic fungi.

Biocontrol Activity of Aspergillus terreus ANU-301 against Two Distinct Plant Diseases, Tomato Fusarium Wilt and Potato Soft Rot

  • Choi, Hyong Woo;Ahsan, S.M.
    • The Plant Pathology Journal
    • /
    • 제38권1호
    • /
    • pp.33-45
    • /
    • 2022
  • To screen antagonistic fungi against plant pathogens, dual culture assay (DCA) and culture filtrate assay (CFA) were performed with unknown soil-born fungi. Among the different fungi isolated and screened from the soil, fungal isolate ANU-301 successfully inhibited growth of different plant pathogenic fungi, Colletotrichum acutatum, Alternaria alternata, and Fusarium oxysporum, in DCA and CFA. Morphological characteristics and rDNA internal transcribed spacer sequence analysis identified ANU-301 as Aspergillus terreus. Inoculation of tomato plants with Fusarium oxysporum f. sp. lycopersici (FOL) induced severe wilting symptom; however, co-inoculation with ANU-301 significantly enhanced resistance of tomato plants against FOL. In addition, culture filtrate (CF) of ANU-301 not only showed bacterial growth inhibition activity against Dickeya chrysanthemi (Dc), but also demonstrated protective effect in potato tuber against soft rot disease. Gas chromatography-tandem mass spectrometry analysis of CF of ANU-301 identified 2,4-bis(1-methyl-1-phenylethyl)-phenol (MPP) as the most abundant compound. MPP inhibited growth of Dc, but not of FOL, in a dose-dependent manner, and protected potato tuber from the soft rot disease induced by Dc. In conclusion, Aspergillus terreus ANU-301 could be used and further tested as a potential biological control agent.

곤충의 식물병원성 진균에 대한 항균활성 (Antifungal Activities of Insect Against the Plant Pathogenic Fungi)

  • 김경아;이경렬;송경식;노시갑
    • 한국잠사곤충학회지
    • /
    • 제48권2호
    • /
    • pp.68-72
    • /
    • 2006
  • 본 연구는 식물병원성곰팡이에 대한 곤충 혈액 및 유충체의 항곰팡이 활성을 조사하였다. 집누에, 장수풍뎅이, 흰점박이 꽃무지 모두 곰팡이 저해활성을 나타냈으며, 집누에의 계통간 비교에서는 1087계통의 활성이 가장 높았다. 또한, 혈액보다는 유충체를 이용한 경우가 더 강한 항곰팡이 활성을 나타냈다. 곤충의 항곰팡이 활성은 곰팡이균주에 따라 다르며, 본 연구에 사용된 3종은 A. panax, C. gloeosporioides 및 P. oryzae 균에 항곰팡이 활성을 가진다.

Antimicrobial Active Substances from Entomopathogenic Fungi (Various Applications of Entomopathogenic Fungi)

  • Shin, Tae Young;Woo, Soo Dong;Kim, Jeong Jun
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2016년도 춘계학술대회 및 임시총회
    • /
    • pp.13-13
    • /
    • 2016
  • Insects constitute the largest and most diverse group of animals in the world. They also serve as the hosts or nutrient sources for an immense assemblage of pathogens, parasites, and predators. More than 700 fungal species from 100 genera have adopted an entomopathogenic lifestyle. Although entomopathogenic fungi were studied as only biocontrol agents against a variety of pests in various countries, it has been recently focused their additional roles in nature. They are antagonists to/against plant pathogens, endophytes, and possibly even plant growth promoting agents. The potential antimicrobial effect against fungal plant pathogens by an isolate of entomopathogenic fungi including Beauveria bassiana, Lecanicillium spp., and Isaria fumosorosea have been reported since late 1990s, but wasn't reported pathogenicity of the isolate against pests. Later, a Canadian Lecanicillium sp. isolate and L. longisporium isolated from Vertalec$^{(R)}$ showed simultaneous control effect against both aphid and cucumber powder mildew. Therefore, the antimicrobial activities of 342 fungi isolates collected from various regions and conditions in Korea were evaluated against plant pathogenic fungus Botrytis cinerea using dual culture technique on agar plate. As a result, 186 isolates (54.4%) shown the antifungal activity against B. cinerea. The culture filtrates of selected fungi completely suppressed the growth of the microorganisms, indicating that suppression was due to the presence of antimicrobial substances in the culture filtrate. Mode of action of these fungi against insect involves the attachment of conidia to the insect cuticle, followed by germination, cuticle penetration, and internal dissemination throughout the insect. During infection process, secreted enzymes, proteinous toxins, and/or secondary metabolites secreted by entomopathogenic fungi can be used to overcome the host immune system, modify host behavior, and defend host resources. Recently, secondary metabolites isolated from entomopathogenic fungi have been reported as potential bioactive substances. Generally, most of bioactive substances produced by entomopathogenic fungi have reported low molecular weight (lower than 1,000 g/mol) as peptide and, in contrast the high molecular weight fungal bioactive substances are rare. Most substances based on entomopathogenic fungi were shown antimicrobial activity with narrow control ranges. In our study we analyzed the antimicrobial substances having antagonistic effects to B. cinerea. Antimicrobial substances in our fungal culture filtrates showed high thermostability, high stability to proteolytic enzymes, and hydrophilicity and their molecular weights were differed from substance. In conclusion, entomopathogenic fungi showed pathogenicity against insect pests and culture filtrate of the fungi also shown to antimicrobial activity. In the future, we can use the entomopathogenic fungi and its secondary metabolites to control both insect pest control and plant pathogenic fungi simultaneously.

  • PDF

황벽나무 추출물의 유기질 문화재 오염균에 대한 항균성 및 항산화 활성 (Antifungal Activities on Organic Heritage Fungi and Antioxidative effect of Phellodendron amurense Extractives)

  • 홍진영;김영희;정미화;조창욱;최정은
    • 펄프종이기술
    • /
    • 제42권5호
    • /
    • pp.54-61
    • /
    • 2010
  • Antifungal and antioxidative activities of Phellodendron amurense extracts were investigated for use as a natural preservative. After separation of P. amurense into phloem, xylem, leaf and fruit each part was subjected to methanol extraction. Each MeOH extract was further fractionated with several solvents(n-hexane, methylene chloride and ethylacetate). Among the methanol extracts, extracts of phloem and leaf inhibited effectively the growth of mold fungi and rot fungi, respectively. Especially, ethylacetate fraction from phloem showed the highest growth inhibitory effects against fungi tested, such as P. citreonigrum H3, P. toxicarium H4, P. corylophilu H5, A. clavatus, P. osteatus, S. commune, and G. lucidum. The fractions of fruit, which had lower antifungal activities mostly than those of phloem, strongly inhibited rot fungi such as G. lucidum, T. versicolor, and T. palustris. Compared to ferulic acid which is well known antioxidant, ethylacetate fraction of fruit showed high antioxidative activities on concentration of 1 to $100{\mu}g/m{\ell}$ in DPPH radical scavenging activity. As a result, antifungal and antioxidative activities of P. amurense suggest that its extract and fraction have a possibility as conservative of cultural heritage because it might get conservation effects against deteriorating microorganisms of cultural heritage.

약용식물 추출물에 의한 사과 저장병 방제 효과 (Effect of Medicinal Plant Extracts on Apple Storage Diseases)

  • 백수봉;정일민
    • 한국식물병리학회지
    • /
    • 제13권1호
    • /
    • pp.57-62
    • /
    • 1997
  • This experiment was conducted to test the control effect of methanol extracts of 10 medicinal plants on apple storage diseases caused by Botryosphaeria berengeriana, Glomerella cingulata and Penicillium expansum. Out of the 10 medicinal plants, methanol extracts of Coptis japonica and Anemarrhena asphodeloides inhibited effectively the mycelial growth of B. berengeriana, G. cingulata and P. expansum in vitro, for which the inhibition ratios of the two plant extracts were 100.0% and 89.3%, 73.7% and 94.1%, and 100.0% and 51.6%, respectively. Spore germination of the three fungi was inhibited 100% only by C. japonica extract, but only P. expansum was inhibited 100% by A. asphodeloides extract. No lesion was formed y the fungi at 5$^{\circ}C$ up to 2 weeks after inoculation. Lesion sizes produced by the three fungi at the temperature ranges of 1$0^{\circ}C$ to $25^{\circ}C$ and infection of B. berengeriana and G. cingulata were inhibited by C. japonica extract, but not by A. asphodeloides extract, while no lesion was formed by the fungi at 5$^{\circ}C$. Infections of the fungi on apples were somewhat stimulated by A. asphodeloides extract.

  • PDF

Growth Characteristics of Rhizophagus clarus Strains and Their Effects on the Growth of Host Plants

  • Lee, Eun-Hwa;Eom, Ahn-Heum
    • Mycobiology
    • /
    • 제43권4호
    • /
    • pp.444-449
    • /
    • 2015
  • Arbuscular mycorrhizal fungi (AMF) are ubiquitous in the rhizosphere and form symbiotic relationships with most terrestrial plant roots. In this study, four strains of Rhizophagus clarus were cultured and variations in their growth characteristics owing to functional diversity and resultant effects on host plant were investigated. Growth characteristics of the studied R. clarus strains varied significantly, suggesting that AMF retain high genetic variability at the intraspecies level despite asexual lineage. Furthermore, host plant growth response to the R. clarus strains showed that genetic variability in AMF could cause significant differences in the growth of the host plant, which prefers particular genetic types of fungal strains. These results suggest that the intraspecific genetic diversity of AMF could be result of similar selective pressure and may be expressed at a functional level.

Stain Fungi and Discoloration Control on Rubberwood (Hevea brasiliensis Muell. Arg.) by Vacuum-Pressure Treatment with Catechin from Gambir (Uncaria gambir Roxb.)

  • Dodi NANDIKA;Elis Nina HERLIYANA;Arinana ARINANA;Yusuf Sudo HADI;Mohamad Miftah RAHMAN
    • Journal of the Korean Wood Science and Technology
    • /
    • 제51권3호
    • /
    • pp.183-196
    • /
    • 2023
  • Recently, the morphological and molecular features of five stain fungi infecting rubberwood (Hevea brasiliensis), namely Paecilomyces maximus, Paecilomyces formosus, Penicillium crustosum, Paecilomyces lecythidis and Aspergillus chevalieri, have been studied. Prior to this study, the authors revealed that catechin from gambir (Uncaria gambir) could inhibit the growth of the white-rot fungus Schizophyllum commune, and it was important to determine the bioactivity of the aforementioned agent against A. chevalieri. The efficacy of the biocidal agent was examined using a laboratory wooden block test. Rubberwood blocks, 8 mm in thickness, 20 mm in width, and 30 mm in length, were impregnated with catechin solution at concentrations of 6%, 9%, 12%, and 15% (w/v) using the vacuum-pressure method, and their bioactivity was monitored over three weeks through visual and scanning electron microscope assessment of fungal growth as well as the discoloration intensity of the wood samples. The results showed that catechin treatment increased the resistance of wood samples to A. chevalieri. Overall, the higher the catechin concentration, the lower the fungal growth. The lowest fungal growth was observed in the wood samples treated with 12% and 15% catechin (score of 0), demonstrating no discoloration. In contrast, the fungal growth score of the untreated wood samples reached 4, indicating severe discoloration. Catechins appear to be adequate biofungicides against stain fungi in rubberwood.

Effects of Long-Term Subcultured Arbuscular Mycorrhizal Fungi on Red Pepper Plant Growth and Soil Glomalin Content

  • Selvakumar, Gopal;Yi, Pyoung Ho;Lee, Seong Eun;Shagol, Charlotte C.;Han, Seung Gab;Sa, Tongmin;Chung, Bong Nam
    • Mycobiology
    • /
    • 제46권2호
    • /
    • pp.122-128
    • /
    • 2018
  • Arbuscular mycorrhizal fungi (AMF) are well-known for their ability to improve plant growth and help plants withstand abiotic stress conditions. Unlike other fungi and bacteria, AMF cannot be stored, as they are obligate biotrophs. Long-term preservation of AMF spores is challenging and may lead to the loss of viability and efficiency. This study aimed to understand the effect of prolonged subculture of AMF species on the growth and glomalin-related soil protein (GRSP) from red pepper (Capsicum annuum L.). AMF spores were mass-produced using different techniques and subcultured in pots with sorghum sudangrass as the host plant for 3 years. Experimental soil samples were collected from natural grassland. Five different AMF inocula were used in triplicate as treatments. After 70 days of growth, red pepper plants were harvested and plant dry weight, plant nutrient content, mycorrhizal colonization, AMF spore count, and soil glomalin content were determined. AMF-treated plants displayed higher dry weight than controls, with only fruit dry weight being significantly different. Similarly, significant differences in phosphorous and potassium contents of the above-ground plant parts were observed between mycorrhizal and control treatments. In addition, soil GRSP content was significantly higher in plants inoculated with Rhizophagus sp. and Gigaspora margarita. The increased plant growth and GRSP content suggest that AMF can be maintained for 3 years without losing their efficiency if subcultured regularly with different symbiotic host plants.

Effect of Ribitol and Plant Hormones on Aposymbiotical Growth of the Lichenforming Fungi of Ramalina farinacea and Ramalina fastigiata

  • Wang, Yi;Han, Keon-Seon;Wang, Xin Yu;Koh, Young-Jin;Hur, Jae-Seoun
    • Mycobiology
    • /
    • 제37권1호
    • /
    • pp.28-30
    • /
    • 2009
  • This study was aimed at evaluating the growth promoting effect of symbiotic algal polyol (ribitol) and plant hormones on the lichen-forming fungi (LFF), Ramalina farinacea (CH050010 and 40403) and Ramalina fastigiata. The addition of ribitol to basal (malt-yeast extract) medium enhanced the relative growth rates of all three LFF. R. farinacea (CH050010), R. farinacea (40403) and R. fastigiata (H06127) showed 35.3%, 29.0% and 29.3% higher growth rates, respectively, compared to the control. IBA (indole-3-butyric acid) and TIBA (2,3,5-tridobenzoic acid) also increased growth rates of the LFF by 34 to 64% and 7 to 28%, respectively, compared to the control. The combination of ribitol with IBA or TIBA synergistically increased the growth of all LFF. For example, ribitol and IBA treatments increased growth rates of R. farinacea (CH050010), R. farinacea (40403) and R. fastigiata (H06127) by 79.4%, 40.3% and 72.8% in, respectively, compared to those grown on the basal medium. The stimulating effect of ribitol and IBA on the LFF growth induced vertical development of the fungal mass in culture. We suggest that lichen-forming fungal growth of Ramalina lichens can be stimulated aposymbiotically by supplementing polyols and plant hormones to the basal medium in the mass production of lichen secondary metabolites under large scale culture conditions.