DOI QR코드

DOI QR Code

Growth Characteristics of Rhizophagus clarus Strains and Their Effects on the Growth of Host Plants

  • Lee, Eun-Hwa (Department of Biology Education, Korea National University of Education) ;
  • Eom, Ahn-Heum (Department of Biology Education, Korea National University of Education)
  • Received : 2015.10.26
  • Accepted : 2015.11.19
  • Published : 2015.12.31

Abstract

Arbuscular mycorrhizal fungi (AMF) are ubiquitous in the rhizosphere and form symbiotic relationships with most terrestrial plant roots. In this study, four strains of Rhizophagus clarus were cultured and variations in their growth characteristics owing to functional diversity and resultant effects on host plant were investigated. Growth characteristics of the studied R. clarus strains varied significantly, suggesting that AMF retain high genetic variability at the intraspecies level despite asexual lineage. Furthermore, host plant growth response to the R. clarus strains showed that genetic variability in AMF could cause significant differences in the growth of the host plant, which prefers particular genetic types of fungal strains. These results suggest that the intraspecific genetic diversity of AMF could be result of similar selective pressure and may be expressed at a functional level.

Keywords

References

  1. Smith SE, Read D. Mycorrhizal symbiosis. 3rd. San Diego (CA): Academic Press; 2008.
  2. van der Heijden MG, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 1998;396:69-72. https://doi.org/10.1038/23932
  3. Govindarajulu M, Pfeffer PE, Jin H, Abubaker J, Douds DD, Allen JW, Bucking H, Lammers PJ, Shachar-Hill Y. Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 2005;435:819-23. https://doi.org/10.1038/nature03610
  4. Giovannetti M. Spore germination and pre-symbiotic mycelial growth. In: Kapulnik Y, Douds DD Jr, editors. Arbuscular mycorrhizas: physiology and function. Berlin: Springer; 2000. p. 47-68.
  5. Simon L, Bousquet J, Levesque RC, Lalonde M. Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 1993;363:67-9. https://doi.org/10.1038/363067a0
  6. Redecker D, Morton JB, Bruns TD. Ancestral lineages of arbuscular mycorrhizal fungi (Glomales). Mol Phylogenet Evol 2000;14:276-84. https://doi.org/10.1006/mpev.1999.0713
  7. Schussler A, Walker C. The Glomeromycota: a species list with new families and new genera. Munich: The Royal Botanic Garden Kew, Botanische Staatssammlung Munich; 2010.
  8. Clapp JP, Rodriguez A, Dodd JC. Inter- and intra-isolate rRNA large subunit variation in Glomus coronatum spores. New Phytol 2001;149:539-54.
  9. Stukenbrock EH, Rosendahl S. Clonal diversity and population genetic structure of arbuscular mycorrhizal fungi (Glomus spp.) studied by multilocus genotyping of single spores. Mol Ecol 2005;14:743-52. https://doi.org/10.1111/j.1365-294X.2005.02453.x
  10. Sanders IR, Alt M, Groppe K, Boller T, Wiemken A. Identification of ribosomal DNA polymorphisms among and within spores of the Glomales: application to studies on the genetic diversity of arbuscular mycorrhizal fungal communities. New Phytol 1995;130:419-27. https://doi.org/10.1111/j.1469-8137.1995.tb01836.x
  11. Mathimaran N, Falquet L, Ineichen K, Picard C, Redecker D, Boller T, Wiemken A. Microsatellites for disentangling underground networks: strain-specific identification of Glomus intraradices, an arbuscular mycorrhizal fungus. Fungal Genet Biol 2008;45:812-7. https://doi.org/10.1016/j.fgb.2008.02.009
  12. Koch AM, Croll D, Sanders IR. Genetic variability in a population of arbuscular mycorrhizal fungi causes variation in plant growth. Ecol Lett 2006;9:103-10. https://doi.org/10.1111/j.1461-0248.2005.00853.x
  13. Croll D, Wille L, Gamper HA, Mathimaran N, Lammers PJ, Corradi N, Sanders IR. Genetic diversity and host plant preferences revealed by simple sequence repeat and mitochondrial markers in a population of the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 2008; 178:672-87. https://doi.org/10.1111/j.1469-8137.2008.02381.x
  14. Colard A, Angelard C, Sanders IR. Genetic exchange in an arbuscular mycorrhizal fungus results in increased rice growth and altered mycorrhiza-specific gene transcription. Appl Environ Microbiol 2011;77:6510-5. https://doi.org/10.1128/AEM.05696-11
  15. Angelard C, Colard A, Niculita-Hirzel H, Croll D, Sanders IR. Segregation in a mycorrhizal fungus alters rice growth and symbiosis-specific gene transcription. Curr Biol 2010;20: 1216-21. https://doi.org/10.1016/j.cub.2010.05.031
  16. Munkvold L, Kjoller R, Vestberg M, Rosendahl S, Jakobsen I. High functional diversity within species of arbuscular mycorrhizal fungi. New Phytol 2004;164:357-64. https://doi.org/10.1111/j.1469-8137.2004.01169.x
  17. St-Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA. Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in the absence of host roots. Mycol Res 1996; 100:328-32. https://doi.org/10.1016/S0953-7562(96)80164-X
  18. Pawlowska TE, Douds DD Jr, Charvat I. In vitro propagation and life cycle of the arbuscular mycorrhizal fungus Glomus etunicatum. Mycol Res 1999;103:1549-56. https://doi.org/10.1017/S0953756299008801
  19. Declerck S, Strullu DG, Fortin JA. In vitro culture of mycorrhizas. Berlin: Springer-Verlag; 2005.
  20. Elsen A, Declerck S, De Waele D. Use of root organ cultures to investigate the interaction between Glomus intraradices and Pratylenchus coffeae. Appl Environ Microbiol 2003;69:4308-11. https://doi.org/10.1128/AEM.69.7.4308-4311.2003
  21. Becard G, Fortin JA. Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol 1988;108:211-8. https://doi.org/10.1111/j.1469-8137.1988.tb03698.x
  22. Becard G, Pfeffer PE. Status of nuclear division in arbuscular mycorrhizal fungi during in vitro development. Protoplasma 1993;174:62-8. https://doi.org/10.1007/BF01404043
  23. Declerck S, Strullu DG, Plenchette C. Monoxenic culture of the intraradical forms of Glomus sp. isolated from a tropical ecosystem: a proposed methodology for germplasm collection. Mycologia 1998;90:579-85. https://doi.org/10.2307/3761216
  24. McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 1990;115:495-501. https://doi.org/10.1111/j.1469-8137.1990.tb00476.x
  25. Davidson RL. Effects of soil nutrients and moisture on root/ shoot ratios in Lolium perenne L. and Trifolium repens L. Ann Bot 1969;33:571-7. https://doi.org/10.1093/oxfordjournals.aob.a084309
  26. Mosse B, Hayman DS. Plant growth responses to vesiculararbuscular mycorrhiza. II. In unsterilized field soils. New Phytol 1971;70:29-34. https://doi.org/10.1111/j.1469-8137.1971.tb02505.x
  27. Smith FA, Jakobsen I, Smith SE. Spatial differences in acquisition of soil phosphate between two arbuscular mycorrhizal fungi in symbiosis with Medicago truncatula. New Phytol 2000;147:357-66. https://doi.org/10.1046/j.1469-8137.2000.00695.x
  28. de Novais CB, Borges WL, Jesus EC, Junior OJ, Siqueira JO. Inter- and intraspecific functional variability of tropical arbuscular mycorrhizal fungi isolates colonizing corn plants. Appl Soil Ecol 2014;76:78-86. https://doi.org/10.1016/j.apsoil.2013.12.010
  29. Avio L, Pellegrino E, Bonari E, Giovannetti M. Functional diversity of arbuscular mycorrhizal fungal isolates in relation to extraradical mycelial networks. New Phytol 2006;172:347-57. https://doi.org/10.1111/j.1469-8137.2006.01839.x