• Title/Summary/Keyword: growth medium optimization

Search Result 183, Processing Time 0.031 seconds

Bacillus sp. WS-42에 의한$\beta$-Mannanase 생산배지의 최적화

  • Kim, Jong-Hwa;Lee, Tae-Kyoo;Yang, Hee-Cheon;Oh, Deok-Kun
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.2
    • /
    • pp.212-217
    • /
    • 1997
  • A strain of Bacillus sp. WS-14 was isolated from soil. Medium optimization for ${\beta}-mannanase$ production by Bacillus sp. WS-14 was performed. Effect of various carbon sources on ${\beta}-mannanase$ production was investigated and locust bean gum was the most effective for ${\beta}-mannanase$ production. ${\beta}-mannanase$ activity and cell growth increased with increasing the concentration of locust bean gum, however, the amounts were not significant. Among nitrogen sources, soytone was the most effective for ${\beta}-mannanase$ production. Inorganic compounds such as $KH_2PO_4,\;NaCl\;Na_2CO_3\;and\;MgSO_4{\cdot}7H_2O\;on\;{\beta}-mannanase$ production were optimized for ${\beta}-mannanase$ production. Locust bean gum of 10.0 g/l, soytone of 5.0 g/l, $KH_2PO_4$ of 2.0 g/l, NaCl of 10.0 g/l, $MgSO_4{\cdot}7H_2O\;of\;0.2\;g/l,\;Na_2CO_3$, of 2.0 g/l were selected as optimum content. Production of ${\beta}-mannanase$ by using the optimum medium was carried out. The maximum ${\beta}-mannanase$ activity of 20.8 unit/ml could be obtained after 14 h fermentation which corresponed to the productivity of ${\beta}-mannanase$ of 1.48 unit/ml-h.

  • PDF

Isolation of Bacillus sp. Producing Multi-enzyme and Optimization of Medium Conditions for Its Production Using Feedstuffs for Probiotics (Probiotics용 복합효소 분비 Bacillus sp.의 분리 및 원료사료를 이용한 균주 생산을 위한 배지 조건의 최적화)

  • 양시용;송민동;김언현;김창원
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.2
    • /
    • pp.110-114
    • /
    • 2001
  • Isolation of BacilLus sp. producing multi-enzyme and optimization of medium conditions for its production using feedstuffs for probiotics were carried out in this study. A bacterium isolated from natural resources, namely Bacillus subtilis 4-3, has multi-enzyme activity (phytase. cellulase, xylanasc, protease, and amylase. In the culture of B. subtilis 4-3 using soybean meal and rice bran. relatively low phytate degradation was noted using whereas high phytate degradability was observed with wheat bran (80.63%). The optimal composition of medium using feedstuffs was 1.0% (w/v) soybean meal and 2% (w/v) molasses to yield high cell growth.

  • PDF

Medium Optimization for the Production of Probiotic Lactobacillus acidophilus A12 Using Response Surface Methodology

  • Lee, Na-Kyoung;Park, Yeo-Lang;Choe, Ga-Jin;Chang, Hyo-Ihl;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.30 no.3
    • /
    • pp.359-364
    • /
    • 2010
  • Lactobacillus acidophilus A12 was isolated from chicken feces for use as an immunostimulating livestock probiotic. The purpose of this study was to optimize the production of L. acidophilus A12 using response surface methodology (RSM). Initially, the influence of growth medium was studied in terms of carbon sources (glucose, fructose, lactose, glycerol, sucrose, ethanol, and mannitol), nitrogen sources (beef extract, yeast extract, malt extract, and tryptone), and inorganic salts ($CaCl_2$, $MgSO_4$, $KH_2PO_4$, $(NH_4)_2SO_4$, $FeSO_4$, and NaCl). Through one factor-at-a time experiment, lactose, yeast extract, and $CaCl_2$ were determined to be the best sources of carbon, nitrogen, and inorganic salt, respectively. The optimum composition was found to be 17.7 g/L lactose, 18.6 g/L yeast extract, and 0.9 g/L $CaCl_2$. Under these conditions, a maximum cell density of 9.33 Log CFU/mL was produced, similar to the predicted value.

Optimizing the composition of the medium for the viable cells of Bifidobacterium animalis subsp. lactis JNU306 using response surface methodology

  • Dang, Thi Duyen;Yong, Cheng Chung;Rheem, Sungsue;Oh, Sejong
    • Journal of Animal Science and Technology
    • /
    • v.63 no.3
    • /
    • pp.603-613
    • /
    • 2021
  • This research improved the growth potential of Bifidobacterium animalis subsp lactis strain JNU306, a commercial medium that is appropriate for large-scale production, in yeast extract, soy peptone, glucose, L-cysteine, and ferrous sulfate. Response surface methodology (RSM) was used to optimize the components of this medium, using a central composite design and subsequent analyses. A second-order polynomial regression model, which was fitted to the data at first, significantly lacked fitness. Thus, through further analyses, the model with linear and quadratic terms plus two-way, three-way, and four-way interactions was selected as the final model. Through this model, the optimized medium composition was found as 2.8791% yeast extract, 2.8030% peptone soy, 0.6196% glucose, 0.2823% L-cysteine, and 0.0055% ferrous sulfate, w/v. This optimized medium ensured that the maximum biomass was no lower than the biomass from the commonly used blood-liver (BL) medium. The application of RSM improved the biomass production of this strain in a more cost-effective way by creating an optimum medium. This result shows that B. animalis subsp lactis JNU306 may be used as a commercial starter culture in manufacturing probiotics, including dairy products.

Optimal Conditions for the Production of Immunostimulating Polysaccharides from the Suspension Culture of Angelica gigas Cells. (면역증강성 다당 생산을 위한 참당귀 세포배양의 최적조건)

  • 안경섭;서원택;심웅섭;김익환
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.2
    • /
    • pp.130-136
    • /
    • 1998
  • An Immunostimulating polysaccharide was produced from the suspension culture of Angelica gigas H4, plant cells. In order to enhance the polysaccharide production by the A. gigas cell culture, medium composition and physical conditions were optimized. Schenk and Hildebrandt (SH) medium was selected as an optimal basal medium for the growth of A. gigas. The maximum cell and polysaccharide concentration obtained in SH medium were 15.8 g DCW/l and 0.85 g polysaccharide/l, respectively, at $25^{\circ}C$ under dark condition. For the enhanced polysaccharide production, a polysaccharide production medium (PPM) was established by modifying Gamborg B5 medium with optimized carbon sources, growth regulators, organic and inorganic elements. Optimal initial pH and temperature were 6.0-6.6 and $20^{\circ}C$, respectively, and the dark condition was better than the light condition. The maximum polysaccharide concentration of 1.5 g/l could be obtained through the optimization of the medium composition and physical conditions.

  • PDF

Establishment of Miniaturized Cultivation Method for Large and Rapid Screening of High-yielding Monascus Mutants, and Enhanced Production of Monacolin-K through Statistical Optimization of Production Medium (Monascus 균사체의 소규모 배양을 통한 고생산성 균주의 대규모 선별방법 확립과 통계적 생산배지 최적화를 통한 Monacolin-K 생산성 향상)

  • Lee, Mi-Jin;Jeong, Yong-Seob;Kim, Pyeung-Hyeun;Chun, Gie-Taek
    • KSBB Journal
    • /
    • v.22 no.5
    • /
    • pp.305-312
    • /
    • 2007
  • It is crucial to develop a miniaturized cultivation method for large and rapid screening of high-yielding mutants of monacolin-K, a powerful anti-hypercholesterolemic secondary metabolite biosynthesized by the fungal cells of Monascus ruber. In order to investigate as many strains as possible in a short time, a miniaturized fermentation method especially suitable for the cultivation of the filamentous Monascus mutants was developed using $50m{\ell}$ culture-tube ($7m{\ell}$ of working volume) instead of the traditional $250m{\ell}$ flask ($50m{\ell}$ of working volume). Generally, in filamentous fungal cell fermentations, morphologies in growth and production cultures should be maintained as thick filamentous and compact-pelleted (usually less than 1 mm in diameter) forms, respectively, for enhanced production of secondary metabolites in final production cultures. In this study, we intended to induce the respective optimal morphologies in the miniaturized culture system for the purpose of rapid screening of overproducers. Miniaturized growth culture system was successfully developed due to the mass production of spores in the statistically optimized solid medium. When large amounts of spores were inoculated into the growth cultures, and brown rice flour (20 g/L) was also supplemented to the growth medium, dense filamentous morphologies were successfully induced in the growth cultures performed with the 50 ml culture tubes. It was implied that the amounts of spores inoculated into the growth tube-cultures and the growth medium components should be the key factors for the induction of the filamentous forms in the growth fermentations. Furthermore, in order to statistically optimize production medium, multiple experiments based on Plackett-Burman design and response surface method (RSM) were carried out, resulting in more than 2 fold enhanced production of monacolin-K in the final production cultures with the optimized production medium. Notably, under the production culture conditions with the statistically optimized medium, optimal pellet sizes below 1 mm in diameter were reproducibly induced, in contrast to the thick and viscous filamentous morphologies observed in the previous production cultures.

Optimization of Indole-3-acetic Acid (IAA) Production by Bacillus megaterium BM5

  • Lee, Jae-Chan;Whang, Kyung-Sook
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.461-468
    • /
    • 2016
  • One of the important phytohormones produced by plant growth promoting bacteria is the auxin; indole-3-acetic acid (IAA), with L-tryptophan as the precursor. In this study, we focused on the investigation of optimal conditions for the production of IAA by Bacillus megaterium BM5. We investigated culturing conditions, such as incubation temperature, pH of the culture medium and incubation period, with varying media components such as inoculation volume, tryptophan concentration and carbon and nitrogen source. Besides, optimization study intended for high IAA production was carried out with fermentation parameters such as rpm and aeration. The initial yield of $42{\mu}g\;IAA\;ml^{-1}$ after 24 hr increased to $85{\mu}g\;ml^{-1}$ when 5% (v/v) of L-tryptophan was used in the culture broth. The maximum yield of $320{\mu}g\;IAA\;ml^{-1}$ was observed in trypticase soy broth (TSB) supplemented with starch and soybean meal as C and N sources with a C/N ratio of 3:1 (v/v) at $30^{\circ}C$, pH 8.0 for 48 hrs with 1.0 vvm and 250 rpm in 5 L working volume using 10 L scale fermenter. The bacterial auxin extracted from the culture broth was confirmed by thin layer chromatography and high-performance liquid chromatography and effect on plant growth was confirmed by root elongation test.

Statistical optimization of culture media contained soy proteins and hypocotyl for the growth of Bifidobacterium lactis BL 740 and production of soy isoflavone aglycones (대두 단백질 및 배아를 이용한 Bifidobacterium lactis BL740의 균체성장 및 이소플라본 비배당체 생산를 위한 통계적 배지 최적화)

  • Lee, Choong-Young;Lee, Yoon-Bok;Lee, Keun-Ha;Park, Myeong-Soo;Hwang, Seock-Yeon;Hong, Seung-Bok;Yoo, Yung-Choon;Yu, Byung-Yeon;Kim, Chung-Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.53 no.3
    • /
    • pp.126-131
    • /
    • 2010
  • In order to maximize the growth of Bifidobacterium lactis BL 740 and soy isoflavone agycones production, we investigated the optimization of a culture medium containing soy hypocotyls, which are the byproducts of the soy manufacturing process, and soy proteins. The ingredients of the medium containing soy materials (S-medium) were selected by fractional factorial design (FFD) and central composite design (CCD) within a desirable range. The FFD was applied by six factors: glucose, cellobiose, fructooligosaccharide, soy peptone, soy protein, and soy hypocotyl. Soy protein, soy peptone, and soy hypocotyl were found to be significant factors from the result of FFD for both the growth of B. lactis BL 740 and aglycone production. The CCD was then applied with three variables found from FFD at five levels each and the optimum values were determined for the three variables: soy peptone, soy protein, and soy hypocotyl. In the case of the growth of B. lactics BL740, the proposed optimal media contained 12.73 g/L of soy protein, 29.55 g/L of soy peptone, and 130.67 g/L of soy hypocotyl. To produce isoflavone aglycones, optimized media was composed of 2.06 g/L, soy protein, 1.25 g/L of soy peptone, and 60.02 g/L of soy hypocotyl.

Optimization of Medium Composition for the Mycelial Growth of Sparassis crispa (꽃송이버섯의 균사 생장을 위한 배지 조건 최적화)

  • Kim, Jin-Woo;Cheon, Woo-Jae;Chai, Kyung-Hee;Kim, Dong-Gwan;Son, Sung-Ho;Kim, Jong-Guk;Lim, Hee-Jae
    • Journal of Life Science
    • /
    • v.22 no.2
    • /
    • pp.200-208
    • /
    • 2012
  • The characteristics of mycelium growth of Sparassis crispa KGFS08 and KFRI746 in liquid culture were investigated. The optimum growth of the mycelium of S. crispa was observed in the KTM medium. The best carbon source was starch. In terms of nitrogen sources, tryptone affected mycelial growth in the liquid culture. The optimal culture conditions were pH 4.0-5.0 in STK medium [3% (w/v) starch, 0.3% (w/v) tryptone, 0.1% (w/v) $KH_2PO_4$, and 0.1% (w/v) folic acid].

Antimicrobial activities of Burkholderia sp. strains and optimization of culture conditions (Burkholderia sp. OS17의 항균활성 증진을 위한 배양최적화)

  • Nam, Young Ho;Choi, Ahyoung;Hwang, Buyng Su;Chung, Eu Jin
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.428-435
    • /
    • 2018
  • In this study, we isolated and identified bacteria from freshwater and soil collected from Osang reservoir, to screen antimicrobial bacteria against various pathogenic bacteria. 38 strains were isolated and assigned to the class Proteobacteria (22 strains), Actinobacteria (7 strains), Bacteroidets (6 strains), and Firmicutes (3 strains) based on 16S rRNA gene sequence analysis. Among them, strain OS17 showed a good growth inhibition against 5 methicillin-resistant Staphylococcus aureus subsp. aureus strains and Bacillus cereus, Bacillus subtilis, Filobasidium neoformans. As a result of the 16S rRNA gene sequence analysis, strain OS17 show the high similarity with Burkholderia ambifaria $AMMD^T$, B. diffusa $AM747629^T$, B. tettitorii $LK023503^T$ 99.8%, 99.7%, 99.6%, respectively. We investigated cell growth and antimicrobial activity according to commercial culture medium, temperature, pH for culture optimization of strain OS17. Optimal conditions for growth and antimicrobial activity in strain OS17 were found to be: YPD medium, $35^{\circ}C$ and pH 6.5. When the strain was cultured in LB, NB, TSB, R2A media at $20^{\circ}C$ and $25^{\circ}C$, the antimicrobial activity did not show. Culture filtrate of strain OS17 showed antimicrobial activity against 5 MRSA strains, Bacillus cereus, Bacillus subtilis, and Filobasidium neoformans with inhibition zones from 2 to 8 mm. Optimal reaction time was 48 h in YPD medium, 100 rpm and 0.3 vvm in 2 L-scale fed-batch fermentation process for antimicrobial activity. Culture optimization of strain OS17 can be improved on antimicrobial activity. Therefore, the antimicrobial activity of Burkholderia sp. OS17 had potential as antibiotics for pathogens including MRSA.