• Title/Summary/Keyword: growth life prediction

Search Result 172, Processing Time 0.027 seconds

Development of Deterioration Prediction Model and Reliability Model for the Cyclic Freeze-Thaw of Concrete Structures (콘크리트구조물의 반복적 동결융해에 대한 수치 해석적 열화 예측 및 신뢰성 모델 개발)

  • Cho, Tae-Jun;Kim, Lee-Hyeon;Cho, Hyo-Nam
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.13-22
    • /
    • 2008
  • The initiation and growth processes of cyclic ice body in porous systems are affected by the thermo-physical and mass transport properties, as well as gradients of temperature and chemical potentials. Furthermore, the diffusivity of deicing chemicals shows significantly higher value under cyclic freeze-thaw conditions. Consequently, the disintegration of concrete structures is aggravated at marine environments, higher altitudes, and northern areas. However, the properties of cyclic freeze-thaw with crack growth and the deterioration by the accumulated damages are hard to identify in tests. In order to predict the accumulated damages by cyclic freeze-thaw, a regression analysis by the response surface method (RSM) is used. The important parameters for cyclic freeze-thawdeterioration of concrete structures, such as water to cement ratio, entrained air pores, and the number of cycles of freezing and thawing, are used to compose the limit state function. The regression equation fitted to the important deterioration criteria, such as accumulated plastic deformation, relative dynamic modulus, or equivalent plastic deformations, were used as the probabilistic evaluations of performance for the degraded structural resistance. The predicted results of relative dynamic modulus and residual strains after 300 cycles of freeze-thaw show very good agreements with the experimental results. The RSM result can be used to predict the probability of occurrence for designer specified critical values. Therefore, it is possible to evaluate the life cycle management of concrete structures considering the accumulated damages due to the cyclic freeze-thaw using the proposed prediction method.

Development of Western Cherry Fruit Fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), after Overwintering in the Pacific North West Area of USA (미국 북서부지역에 발생하는 서부양벚과실파리의 발생 월동 후 발생 동태에 관한 연구)

  • Song, Yoo-Han;Ahn, Kwang-Bok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.4
    • /
    • pp.217-227
    • /
    • 2007
  • The western cherry fruit fly, Rhagoletis indifferens Curran (Diptera:Tephritidae), is the most important pest of cultivated cherries in the Pacific Northwest area of the United States, being widely distributed throughout Oregon, Washington, Montana, Utah, Idaho, Colorado and parts of Nevada. The control of R. indifferens has been based on calendar sprays after its first emergence because of their zero tolerance for quarantine. Therefore, a good prediction model is needed for the spray timing. This study was conducted to obtain the empirical population dynamic information of R. indifferens after overwintering in the major cherry growing area of the Pacific Northwest of the United States, where the information is critically needed to develop and validate the prediction model of the fruit fly. Adult fly populations were monitored by using yellow sticky and emergence traps. Larvae growth and density in fruits were observed by fruit sampling and the pupal growth and density were monitored by pupal collection traps. The first adult was emerged around mid May and a large number of adults were caught in early June. A fruit had more than one larva from mid June to early July. A large number of pupae were caught in early July. The pupae were collected in various period of time to determine the effect of pupation timing and the soil moisture content during the winter. A series of population density data collected in each of the developmental stage were analyzed and organized to provide more reliable validation information for the population dynamic models.

Development of Leaf Spot (Myrothecium roridum) and Dispersal of Inoculum in Mulberry (Morus spp.)

  • Kumar, P.M.Pratheesh;Pal, S.C.;Qadri, S.M.H.;Gangwar, S.K.;Saratchandra, B.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.6 no.2
    • /
    • pp.163-169
    • /
    • 2003
  • Studies were conducted on the effect of pruning time, host age, conidial dispersal and weather parameters on the incidence and severity of mulberry leaf spot (Myrothecium roridum). The disease severity (%) increased with increase in shoot age irrespective of pruning date. Maximum disease severity was observed in plants pruned during first week of April and minimum disease severity in plants pruned during first week of March. Significant (P < 0.01) influence of date of pruning, shoot age and their interaction was observed on severity of the disease. Apparent infection rate (r) was significantly higher during the plant growth period from day 48 to day 55. Average apparent yale was higher in plants pruned during first week of April and least in plants pruned during first week of July. The disease infection was negatively correlated to distance from the inoculum source. Leaf spot severity (%) was influenced by weather parameters. Multiple regression analysis revealed contribution of various combinations of weather parameters on the disease severity. Linear prediction model $(Y = -81.803+1.176x_2+0.765x_3) with significant $R^2$ was developed for prediction of the disease under natural epiphytotic condition.

Evaluation of crude protein levels in White Pekin duck diet for 21 days after hatching

  • Cho, Hyun Min;Wickramasuriya, Samiru Sudharaka;Macelline, Shemil Priyan;Hong, Jun Seon;Lee, Bowon;Heo, Jung Min
    • Journal of Animal Science and Technology
    • /
    • v.62 no.5
    • /
    • pp.628-637
    • /
    • 2020
  • In poultry diets, a requirement of crude protein is one of the most important factors in poultry productivity. Besides, the Pekin duck requirement of crude protein is still not clear. This experiment was conducted to determine the crude protein requirement of Pekin duck on diet formulation by investigation of growth performance, carcass trait, and analysis of blood parameter for a hatch to 21-day (d) of age. A total of 432 male White Pekin ducks were randomly allocated to six levels of crude protein (i.e., 15%, 17%, 19%, 21%, 23%, and 25%) to give six replicate pens per treatment with 12 ducklings per each pen. Body weight and feed intake were measured weekly by calculating feed conversion ratio and protein intake. Two ducklings each pen was euthanized via cervical dislocation for analysis of carcass trait and plasma blood on 21-d of age. Data were applied on both prediction linear-plateau and quadratic-plateau models by estimation of the crude protein requirements. Data were applied on both prediction linear-plateau and quadratic-plateau models by estimation of the crude protein requirements. The level of crude protein requirements of Pekin ducks for 21 days after the hatch was estimated to be 20.63% and 23.25% diet for maximum daily gain, and minimum feed conversion ratio, respectively.

Domestic Automotive Exterior Lamp-LEDs Demand and Forecasting using BASS Diffusion Model (BASS 확산 모형을 이용한 국내 자동차 외장 램프 LED 수요예측 분석)

  • Lee, Jae-Heun
    • Journal of Korean Society for Quality Management
    • /
    • v.50 no.3
    • /
    • pp.349-371
    • /
    • 2022
  • Purpose: Compared to the rapid growth rate of the domestic automotive LED industry so far, the predictive analysis method for demand forecasting or market outlook was insufficient. Accordingly, product characteristics are analyzed through the life trend of LEDs for automotive exterior lamps and the relative strengths of p and q using the Bass model. Also, future demands are predicted. Methods: We used sales data of a leading company in domestic market of automotive LEDs. Considering the autocorrelation error term of this data, parameters m, p, and q were estimated through the modified estimation method of OLS and the NLS(Nonlinear Least Squares) method, and the optimal method was selected by comparing prediction error performance such as RMSE. Future annual demands and cumulative demands were predicted through the growth curve obtained from Bass-NLS model. In addition, various nonlinear growth curve models were applied to the data to compare the Bass-NLS model with potential market demand, and an optimal model was derived. Results: From the analysis, the parameter estimation results by Bass-NLS obtained m=1338.13, p=0.0026, q=0.3003. If the current trend continues, domestic automotive LED market is predicted to reach its maximum peak in 2021 and the maximum demand is $102.23M. Potential market demand was $1338.13M. In the nonlinear growth curve model analysis, the Gompertz model was selected as the optimal model, and the potential market size was $2864.018M. Conclusion: It is expected that the Bass-NLS method will be applied to LED sales data for automotive to find out the characteristics of the relative strength of q/p of products and to be used to predict current demand and future cumulative demand.

Genome-wide association study of cold stress in rice at early young microspore stage (Oryza sativa L.).

  • Kim, Mijeong;Kim, Taegyu;Lee, Yoonjung;Choi, Jisu;Cho, Giwon;Lee, Joohyun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.313-313
    • /
    • 2017
  • Cold stress is one of the most influenced factors to rice yield. In order to identify genes related to cold stress in fertility stage, genome-wide association study (GWAS) was conducted. Cultivated 129 rice germplasm were moved in the growth chamber under the condition of $12^{\circ}C/RH70%$(12h day/12h night when the rice plant was grown in 10 DBH(days before heading). Also, rice plant as control was moved in the green house under condition of $28^{\circ}C/RH70%$(12h day/12h night). After 4 days the plants were moved in a greenhouse. The fertility of rice plant were monitored after the grain were fully grown. The most tolerant rice germplasm to cold stress were Cheongdo-Hwayang-12 and IR38 as 63.1 and 61.8 of fertility and the most recessive rice germplasm were Danyang38 and 8 rice germplasm as 0. As a result of GWAS with re-sequencing data and fertility after cold treatment germplasm using genome association and prediction integrated tool (GAPIT), 99 single-nucleotide polymorphisms (SNPs) were observed by applying a significance threshold of -logP>4.5 determined by QQ plot. With SNPs region, 14 candidate genes responded to cold stress in fertility stage were identified.

  • PDF

A Study on the Fatigue Crack Growth Under Variable Loading of Titanium Alloy (티탄합금의 변동하중하의 피로균열진전거동)

  • Lee, Jong-Hyung;Lee, Sang-Young;Yi, Chang-Heon;Kim, Yun-Gon;Lim, Chun-Kyoo;Lee, Chun-Kon;Kwon, Yung-Shin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.4
    • /
    • pp.201-206
    • /
    • 2007
  • Most of the fatigue fractures of various machine structures start at discontinuities or small defects. In this study property of crack growth of titanium alloy was also analyzed to investigate the difference compared with the carbon steel. Titanium alloy has very high specific strength, and the material is widely utilized in advanced engineering fields such as aerospace, atomic energy and ocean development because of its excellence in corrosion and heat resistance. Generally the machine structures experience irregular loadings rather than periodic forces. The prediction of the fatigue life therefore has been analyzed to provide fundamentals of the design and estimation of the machine structures under irregular loading conditions.

  • PDF

Model Development for Lactic Acid Fermentation and Parameter Optimization Using Genetic Algorithm

  • LIN , JIAN-QIANG;LEE, SANG-MOK;KOO, YOON-MO
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1163-1169
    • /
    • 2004
  • An unstructured mathematical model is presented for lactic acid fermentation based on the energy balance. The proposed model reflects the energy metabolic state and then predicts the cell growth, lactic acid production, and glucose consumption rates by relating the above rates with the energy metabolic rate. Fermentation experiments were conducted under various initial lactic acid concentrations of 0, 30, 50, 70, and 90 g/l. Also, a genetic algorithm was used for further optimization of the model parameters and included the operations of coding, initialization, hybridization, mutation, decoding, fitness calculation, selection, and reproduction exerted on individuals (or chromosomes) in a population. The simulation results showed a good fit between the model prediction and the experimental data. The genetic algorithm proved to be useful for model parameter optimization, suggesting wider applications in the field of biological engineering.

Low Cycle Fatigue of PPS Polymer Injection Welds (I) -Fatigue Crack Behavior-

  • Song, Jun-Hee;Lim, Jae-Kyoo;Kim, Yon-Jig;Kim, Hong-Gun
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.647-653
    • /
    • 2003
  • An important class of short-fiber reinforced composites is the sheet molding compound, which is recently developed and currently used in many engineering applications. Fatigue failure of the composites is a subject of major concern in design and cyclic crack propagation is of particular significance in the fatigue life prediction of short fiber composites. However, research on the fatigue behavior of polymer injection weld, especially short glass fiber-filled polymer injection weld, has not been carried out. In this study the analyses of the fatigue crack growth behaviors at weld line and in the bulk are performed based on low cycle fatigue test.

Stress Intensity factor Analysis for Three-Dimensional Cracks in Inhomogeneous Materials (비균질재료의 3차원 균열에 대한 응력확대계수 해석)

  • 김준수;이준성
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.197-203
    • /
    • 2003
  • Accurate stress intensity factor analyses and crack growth rate of surface -cracked components in inhomogeneous materials are needed fur reliable prediction of their fatigue life and fracture strengths. This paper describes an automated stress intensity factor analysis of three-dimensional (3D) cracks in inhomogeneous materials. 3D finite element method (FEM) was used to obtain the stress intensity factor fur subsurface cracks and surface cracks existing in inhomogeneous materials. To examine accuracy and efficiency of the present system, the stress intensity factor for a semi-elliptical surface crack in a plate subjected to uniform tension is calculated, and compared with Raju-Newman's solutions. Then the system is applied to analyze cladding effect of subsurface cracks in inhomogeneous materials. The results were compared with those surface cracks in homogeneous materials. It is clearly demonstrated from these analyses that the stress intensity factors for subsurface cracks are less than those of surface cracks. Also, this system is applied to analyze cladding effect of surface cracks in inhomogeneous materials.