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Abstract An unstructured mathematical model is presented
for lactic acid fermentation based on the energy balance. The
proposed model reflects the energy metabolic state and then
predicts the cell growth, lactic acid production, and glucose
consumption rates by relating the above rates with the energy
metabolic rate. Fermentation experiments were conducted
under various initial lactic acid concentrations of 0, 30, 50,
70, and 90 g/1. Also, a genetic algorithm was used for further
optimization of the model parameters and included the operations
of coding, initialization, hybridization, mutation, decoding, fitness
calculation, selection, and reproduction exerted on individuals
(or chromosomes) in a population. The simulation results
showed a good fit between the model prediction and the
experimental data. The genetic algorithm proved to be useful
for model parameter optimization, suggesting wider applications
in the field of biological engineering.
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Lactic acid has extensive applications in the food and
pharmaceutical industries. In addition, its potential use as a
source for polylactate polymers in making biodegradable
plastics has an even bigger impact. Currently, about half of
the world production of lactic acid is based on fermentation,
while the remainder is created synthetically [10].
Modeling and simulation are powerful tools for the
feasibility evaluation, design, and optimization of a fermentation
system. The most popular mathematical model for lactic
acid production is the Luedeking-Piret model [4], along
with several modified models [1, 6, 7, 9]. The main advantages
of these models are simplicity and fewer parameters. Yet,
since they only relate lactic acid production to growth-
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associated and nongrowth-associated terms, these mathematical
models have limited physiological value. Although a
structured model is more rational and meaningful [7], it is
too sophisticated for practical applications and has too
many parameters that are difficult to determine. Accordingly,
the current study uses an unstructured model to represent
lactic acid production as a function of the energy production
through the glycolysis pathway, thereby providing more
physiological meaning, while maintaining simplicity for
practical application. In addition, a genetic algorithm (GA),
which is efficient in optimizing nonlinear and sophisticated
systems, is used to optimize the model parameters [2].

MATERIALS AND METHODS

Strain, Medium, and Cultivation Conditions

The strain used was Lactobacillus casei subsp. rhamnosus
(ATCC 10863). The medium contained yeast extract 15 g/l,
sodium acetate 1 g/1, K,HPO, 0.3 g/l, KH,PO, 0.15 g/l, MgSO,-
7H,0 0.15 g/l, and glucose 90 g/l. Four percent of CaCO, was
also added to buffer the pH. Initial lactic acid concentrations
were 0, 30, 50, 70, and 90 g/1.

The cultivation was performed in 100-ml flasks, containing
50 ml of the medium and 5% inoculum. The mixture was
cultivated at 42°C, while shaking at 150 rpm in a rotary
shaking incubator (Model KMC-8480 SF, Vision Scientific
Co., Korea).

Analytical Procedures

A 1.5 ml sample was taken from each flask and centrifuged,
then the supernatant was stored in a refrigerator for a
subsequent analysis of the glucose and lactic acid. The
glucose and lactic acid concentrations were measured based
on the glucose oxidase-peroxidase and lactic acid oxidase-
peroxidase methods, respectively, using an autoanalyzer
(Biochemistry Analyzer 2700; YSI, Ohio, U.S.A.). A 0.5 ml
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samples was also taken from each flask and the cell
concentration measured according to the light absorbance
method using a spectrophotometer (Spectronic Instruments
Co., US.A)) at a wavelength of 600 nm. The samples
were diluted from 5 to 50 times to keep the light
absorbance value below 0.7. A 0.5M HCI solution was
used to dilute the samples so as to dissolve the solid
CaCO, and avoid any interference in the light absorbance
measurement.

RESULTS AND DISCUSSION

Yields from Lactic Acid Fermentation

The fermentation experiments were performed with initial
lactic acid concentrations of 0, 30, 50, 70, and 90 g/l, as
described above. The time course of the cell mass, glucose
and lactic acid concentrations were measured. The yield of
lactic acid from glucose, Y., was calculated, as shown in
Fig. 1, and found to be slightly more than 80% (in the case
of initial lactic acid concentrations of 70 and 90 g/, Y,
was not calculated, as the glucose consumption and lactic
acid production were both very low, thereby potentially
leading to large relative errors).

In a minimum medium, a carbon source is used for
energy production, product and byproduct synthesis, and
cell synthesis; while in a complex medium, a carbon
source is only used for energy production, and product and
byproduct synthesis, but not for cell synthesis. This was
previously confirmed when using a complex medium for
Lactobacillus, where only a litile glucose was used in
anabolism and the amount of glucose consumption for cell
synthesis could be omitted in the mass balance calculations
[8, 12]. Thus, if all the glucose is metabolized through the
glycolysis pathway to produce two moles of lactic acid
based on one mole of glucose, the theoretical value of Y,
should be 1 g/g[Y,:=(2xM, /M, )=1]. The results in Fig. 1
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Fig. 1. Y, with various initial lactic acid concentrations.
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Fig. 2. Y, with various initial lactic acid concentrations.

show that nearly 20% of the glucose was not metabolized
through the glycolysis pathway to produce energy and
lactic acid. Instead, this portion of glucose, G;, was used
in the synthesis of the secreted byproducts. In addition
to lactic acid, various oligosaccharides and other kinds
of organic acids were also detected in the fermentation
broth using HPLC (data not shown). As such, G; can be
calculated based on the total glucose consumption, G,
minus the glucose consumption for lactic acid production,
G,,., as follows:

Lac?

WLac : MGIuc
MLac

where, W, 1s the weight of lactic acid produced, and M,
and M, are the molecular weights of glucose and lactic
acid, respectively. The yield of byproducts from G;, and Y,
is shown in Fig. 2, which was about 0.6 g/g under the
current experimental conditions. Y, was confirmed to be
significantly influenced by the cultivation conditions and
the value of Y, when cultivation using a jar fermenter was
0.3 g/g.

GézGS—GLac=GS_ (1)

Model Development

The specific glucose consumption rate was modeled using
a Monod-type equation together with a lactic acid inhibition
term and modified Logistic equation term as follows:

() (8] (-2
qS ( kS+S 1 pcri 1 Xmax (2)
The specific byproduct production rate, g, was found to be

growth related, therefore, the specific consumption rate of
G;, qs, could be expressed as follows:

_ Qp _Y-u_1.
=y, =Y, "5 M )

Then, the specific lactic acid production rate could be
calculated using Equation (4):
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qp=2'(qs—Qé)‘1\7Ij C))

The specific ATP production rate and specific ATP
consumption rate were described using Equations (5) and
(6), respectively:

JaTpp= 1\_/([% (5)
Jarpc= —};L_ +Mrp ©)

ATP

The quasi-steady state was assumed, so that the specific
ATP production rate was equal to the specific ATP
consumption rate:
qATP.P=qATP.C=1\—/cIIP_=—*&+mATP N
Lac

ATP

The specific growth rate could be obtained using Equations
(2)- (4), and (7):

(q qS - MG]uc N mAﬁ * Y;Tp . 8
= — 8
H M. - 0+2 - YATp ( )

The equations for the mass balance were as follows:

dX
X )]
ds
G=a X (10)
dP
a-':ql’ -X (11)

This model can also be used in modeling cell death.
According to Equation (7), . is minus when (q/M,, )<m,g,.
Yet, it was assumed that 1=>0 in the following simulations,
as no death phase was observed in the experiments.
Accordingly, the above model has more physiological
meaning compared to the Luedeking-Piret model [3] or
other kinds of unstructured mathematical models.

Parameter Value Determination and Optimization
Using Genetic Algorithm

The parameter value of Y, was calculated from the theory
described above, the value of X was measured directly,
and the value of P_, was obtained from a plot of |l versus
the initial lactic acid concentration. The value of & was
calculated from the mass balance of the carbon source. The
initial values of Y, and m,, were obtained from other
research and calculated using the energy balance. Meanwhile,
the initial values of g, and k, were obtained using linear
plots from experimental data, and the values of m and n
were obtained using nonlinear fitting from experimental
data. Thereafter, the parameter values of Y, My s
k,, m, and n were refined using parameter optimization,
which was performed by adjusting the parameter values
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Fig. 3. Chromosome structure in GA.

within respective predetermined small ranges to minimize
the objective function J of Equation (13) (the sum of the
relative squared errors between model predictions and the
raw experimental data) based on a GA using a computer.

A standard GA was used in the optimization, which
included the operations of coding, initialization, hybridization,
mutation, decoding, fitness calculation, selection, and
reproduction exerted on individuals (or chromosomes) in a
population, The potential solution (individual) was coded
as a binary vector, called a chromosome, the elements of
which were called genes and situated in predefined positions,
indicated as alleles (Fig. 3). One chromosome consisted of
six genes, coding for the six parameters, respectively. One
gene was coded by a binary string of 10 bits. Then, every
possible solution of the six parameters was simply represented
by a binary string of 60 bits (Fig. 3). Initialization was
performed to randomly assign initial values of “0” or “1”
to each bit of the binary vectors (chromosomes). Hybridization
was applied to two chromosomes called parents and two
new chromosomes created by the exchange of one or more
parts of the parent chromosomes, which occurred based on
a probability called the hybridization rate. Mutation was
applied by turning over one or more randomly selected bits
in the binary chromosome vectors from “0” to “1” or from
“1” to “0”, which occurred based on a probability called
the mutation rate. Decoding was performed to transform
the binary number of each gene in the chromosome to a
decimal system using the following equation:

hi

Dm—Dmm+2z 1
where h is the ordinal rank of the chromosome, i is the
ordinal rank of the gene in the chromosome, z is the digits
of the binary vector for one gene, b is the binary value
coded by the corresponding gene, D is the decimal value
transformed from b, and D,, and D, are the decimal
values of the maximum and minimum limits, respectively,
of the corresponding parameter.

Selection and reproduction were performed to select
individuals (chromosomes) to create a mating pool for
reproducing offspring. The selection procedure was stochastic
with the fitted chromosomes, judged by fitness (or objective
function J), indicating a better chance of being selected. A
low value of J was defined as a high fitness, with J defined
as follows:

=t Sy (Y Ya) (13

r k rkl

(Dmax - Dmin) (12)
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where R is the number of experimeunts, K is the number of
measured variables, L represents the measurement points
of one variable, Y is the model output, and Y is the
measured value in experiments. To give each variable the
same importance in the optimization, the relative error
(Y- Y./Y,) was used so that J had no unit. Another
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Fig. 5. Changing trend of sum of squared relative errors with
generations in parameter optimization using GA.

Table 1. Parameter values for lactic acid fermentation model.

Parameter Value Unit
Qs max 3 g/gh
ks 0.3 g/l
P, 70 g/l
m 0.7 -
n 4.5 -
M, 0.002 mol/g/h
o 0.6 glg
Y 20 g/mol
Yo 1.0 glg

advantage to using the relative error instead of the absolute
error (Y- Y,) in calculating J was to allow the data points
of one variable at different sampling times to have the
~same importance in the optimization. A flow diagram of
the GA used for the model parameter optimization is
shown in Fig. 4. The program was self-programmed using
Visual Basic and applied the fourth order Runge-Kutta
method to solve the differential Equations and the GA to
minimize J in Equation (13). A population size of 20,
hybridization rate of 0.2, and mutation rate of 0.05 were
used in the GA for the optimization. The J values of the
predictions for the 20 chromosomes in the first 50
generations are shown in Fig. 5, where the largest value of
J became larger as the number of generations increased.
This resulted from the hybridization and mutation operations,
which enlarged the search span and helped to avoid reaching
the local optimum value. Meanwhile, the lowest value of
J decreased as the number of generations increased
(Fig. 5), showing an increased fitness. Very small values of
J (<0.15) were obtained in the early generations (Fig. 5),
indicating the efficacy of the GA in optimizing. The values
of the optimized parameters (Table 1) also produced a
good fit between the simulation and the experimental data
(Fig. 6), thereby reconfirming the effectiveness of a GA
for parameter optimization.

Model Simulation and Comparison with Experimental
Data

The experimental data and model simulations of cell growth,
lactic acid production, and glucose consumption under
various initial lactic acid concentrations are shown in
Fig. 6. The model simulation was performed by solving the
differential equations of the mathematical model using the
fourth order Runge-Kutta method with a self-programmed
Visual Basic (Microsoft Co., U.S.A.) program running on
an IBM compatible computer with Windows ME (Microsoft
Co., U.S.A)). The values of the model parameters used are
shown in Table 1. The simulation results in Fig. 6 show
that the model matched the experimental data satisfactorily.
The simulation of the specific growth rate, specific glucose
consumption rate, and specific ATP production rate using
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Fig. 6. Lactic acid fermentation with various initial lactic acid
concentrations.

Equations (8), (2), and (7), respectively, is shown in Fig. 7,
and the simulations of Y, ., (=m/q,;) and Y s (=q./qs)
are shown in Figs. 8 and 9, respectively.

The maximum values for the specific rates of cell
growth, glucose consumption, and ATP production clearly
decreased with an increase in the initial lactic acid
concentrations. The rates dropped rapidly to low values
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Fig. 7. Simulation of specific growth rate, glucose consumption
rate, and ATP production rate with various initial lactic acid
concentrations.

after about 15 h without glucose depletion when the lactic
acid and/or cell concentrations increased to high levels,
exhibiting strong inhibitory effects (Figs. 6 and 7). The
maximum values of Y,,,, decreased with an increase in
the initial lactic acid concentration (Fig. 8); as U is low, a
larger portion of ATP is used in maintenance, according to
the following Equation (14):
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Fig. 8. Simulation of cell yield from ATP with various initial
lactic acid concentrations.
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(14

Y, Was noticeably larger in the case of an initial lactic
acid concentration of 70 g/l with an extremely small value
of u (Figs. 8 and 9), as a small portion of glucose was
incorporated into the growth-associated byproducts when
the cell growth rate was low. When the cell growth stopped,
Y s increased to the maximum values (Fig. 9). The case
of an initial lactic acid concentration of 90 g/l was not
simulated, as almost no cell growth and glucose consumption
were found.

In conclusion, the proposed mathematical model was
found to effectively reflect the energy metabolic state, yet
still be simple enough for the purposes of process analysis,
design, and optimization. A GA was also proven to be
useful in model parameter optimization, suggesting wider
applications in the field of bioengineering [11].
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Fig. 9. Simulation of ATP yield from glucose with various initial
lactic acid concentrations.
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NOMENCLATURE

: value of binary number coding for one gene (-)

: decimal value of b (-)

: amount of glucose consumed totally (g)

: amount of glucose used for cell synthesis ezc. (g)
: amount of glucose converted to lactic acid (g)

[Zp

cQQuoe

=
®
8

h : ordinal rank of chromosome (-)

H : chromosome number (-)

i : ordinal rank of gene in chromosome (-)

1 : gene number (-)

I : objective function (-)

K : number of measurable variables in model (-)

ks : glucose saturation constant in Monod-type equation
(gD

L : number of measurements for one variable (-)

m : constant (- )

m,, :rate of ATP consumption for maintenance energy
(mol/g/h)

M. :molecular weight of glucose (g/mol)

M,,. :molecular weight of lactic acid (g/mol)

n : constant (-)

P : lactic acid concentration (g/1)

P : critical lactic acid concentration for inhibition of
glucose consumption (g/1)

Qe - specific metabolic rate of ATP (mol/g/h)

Que  © specific ATP consumption rate (mol/g/h)

Quer - Specific ATP production rate (mol/g/h)

G : specific byproduct production rate (g/g/h)

s : specific glucose consumption rate (g/g/h)

gs : specific rate of G; (g/g/h)

Qsme.  : Maximum specific glucose consumption rate (g/

g/h)

Qe : specific lactic acid production rate (g/g/h)

R : experimental number (-)

S : glucose concentration (g/1)

W, :weight of lactic acid produced (g)

X : cell concentration (g/1)

X... experimental value of maximum cell concentration
(g

Y,.r : “apparent” cell yield from ATP (g/mol)

Y. :maximum cell yield from ATP (g/mol)

Y,s :lactic acid yield from glucose (g/g)

Y, :cell yield from glucose (g/g)

Y : measured experimental data (g/1)

Y  :outputs of mathematical model (g/1)

z : digits of binary vector for one gene (-)
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Greek Symbols

3

Y
n

: constant (g/g)
: constant (g/g)
: specific growth rate (1/h)
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