• Title/Summary/Keyword: growth inhibition activity

Search Result 1,741, Processing Time 0.038 seconds

Antiproliferative and Antioxidative Activities of Methanol Extracts of Echinacea angustifolia (Echinacea angustifolia 메탄올 추출물의 암세포 증식억제 및 항산화 효과)

  • Lee Joon-Kyoung;Koo Seung-Ja
    • Korean journal of food and cookery science
    • /
    • v.21 no.3 s.87
    • /
    • pp.311-318
    • /
    • 2005
  • Echinacea, also blown as the purple coneflower, is a herbal medicine that has been used for centuries, customarily as a treatment for the common cold, coughs, bronchitis, upper respiratory infections, and some inflammatory conditions. We investigated the effects of methanol extracts of Echinacea angustifolia on the cytotoxicity against cancer cells $(HepG_2,\;3LL,\;HL60,\;L1210)$ and antioxidative activity. From the test results, each part of Echinaceashowed a cytotoxic effect against the cancer cell lines, and this cytotoxic effect increased with increasing sample concentration. At 1.0 mg/mL concentration the relative cytotoxic activities of the flower bud, leaf, stern and root parts were $90.5\%,\;52.7\%,\;37.1\%\;and\;19.2\%$, respectively, in $HepG_2$ cells, and $75.5\%,\;93.3\%,\;81.2\%,\;and\;75.1\%$ respectively, in HL60 cells, as evaluated by MTT assay. $IC_{50}(50\%\;inhibitory\;concentration)$ of the methanol extracts of the Echinacea flower bud was 0.214 mg/mL on /$HepG_2$ cells, and that of the Echinacea leaf and root was 0.166 mg/mL and 0.210 mg/mL, respectively, on HL60 cells. After /$HepG_2$ cells were incubated for 6 days at $37^{\circ}C$ with various concentrations of each part, the cell number increased while the inhibition rate on the /$HepG_2$ cell growth decreased. The antioxidative activities of the flower bud, leaf, stem and root parts were $59.0\%$ (0.75 mg/mL), $80.76\%$ (0.5 mg/mL), $95.5\%$ (0.25mg/mL) and $98.15\%$ (0.25 mg/mL), respectively, as evaluated by electron donating ability. These results indicated that Echinacea angustifolia has strong anticancer and antioxidative effects in vitro.

Antioxidant and Anticancer Activities of Ginseng Treated with Traditional Rice Wine Steam Process Method (전통적 탁주증자법으로 처리한 홍삼의 일부 항산화 및 항암효과)

  • Ye, Eun-Ju;Kim, Soo-Jung;Park, Chang-Ho;Bae, Man-Jong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.5
    • /
    • pp.599-604
    • /
    • 2005
  • The aim of this study was to develop the new processing method for ginseng. To investigate the efficacy of the new product (the traditional rice wine steamed-red ginseng: RWS-RGS), antioxidant and anticancer effects of RWS-RGS were examined. The DPPH radical scavenging effect of RWS-RGS extracted with ethanol was increased in dose-dependent manner Especially, A3 ($3^{rd}$ traditional rice wine steamed-red ginsengs) exhibited effective DPPH radical scavenging activity. Nitrite scavenging effect of white ginseng (W.G), red ginseng (R.G) and RWS-RGS ($A1\~A9:\;1^{st}$ traditional rice wine steamed-red $ginseng\~9^{th}$ traditional rice wine steamed-red ginseng) were $25.9{\pm}4.4\%,\;12.9{\pm}1.1\%\;and\;26.2{\pm}0.1\~56.1{\pm}0.6\%$ at pH 1.2, respectively. The antitumor effects of W.G, R.G and RWS-RGS (A9) were examined in Hep3B cancer cells. Their growth inhibition against Hep3B cancer cells showed $19.6{\pm}4.5\%,\;54.5{\pm}6.1\%,\;96.3{\pm}2.4\%$ at 5,000 ppm, respectively. These result suggest that the traditional rice wine steamed ginseng will be useful product with antioxidant and antitumor effect.

The Antitumor Effects of Selenium Compound $Na_5SeV_5O_{18}{\cdot}3H_2O$ in K562 Cell

  • Yang, Jun-Ying;Wang, Zi-Ren
    • Archives of Pharmacal Research
    • /
    • v.29 no.10
    • /
    • pp.859-865
    • /
    • 2006
  • With an approach to study the anti-tumor effects and mechanism of selenium compound, we investigated the anti-tumor activity and mechanism of $Na_5SeV_5O_{18}{\cdot}3H_2O$ (NaSeVO) in K562 cells. The results showed that $0.625{\sim}20\;mg/L$ NaSeVO could significantly inhibit the proliferation of K562 cells in vitro in a time- and concentration-dependent manner as determined by microculture tetrazolium (MTT) assay, the IC50 values were 14.41 (4.45-46.60) and 3.45 (2.29-5.22) mg/L after 48 hand 72 h treatment with NaSeVO respectively. In vivo experiments demonstrated that i.p. administration of 5, 10 mg/kg NaSeVO exhibited an significant inhibitory effect on the growth of transplantation tumor sarcoma 180 (S180) and hepatoma 22 (H22) in mice, with inhibition rate 26.8% and 58.4% on S180 and 31.3% and 47.4% on H22, respectively. Cell cycle studies indicated that the proportion of G0/G1 phase was increased at 2.5 mg/L while decreased at 10 mg/L after treatment for 24, 48 h. Whereas S phase was decreased at 2.5-5 mg/L and markedly increased at 10 mg/L after treatment for 48 h. After treatment for 24 h, 10 mg/L NaSeVO also markedly increased S and G2/M phases. Take together, the result clearly showed that NaSeVO markedly increased S and G2/M phases at 10 mg/L. The study of immunocytochemistry showed that the expression bcl-2 is significantly inhibited by 10 mg/L NaSeVO, and bax increased. Morphology observation also revealed typical apoptotic features. NaSeVO also significantly caused the accumulation of $Ca^{2+}$ and $Mg^{2+}$, reactive oxygen species (ROS) and the reduction of pH value and mitochondrial membrane potential in K562 cells as compared with control by confocal laser scanning microscope. These results suggest that NaSeVO has anti-tumor effects and its mechanism is attributed partially to apoptosis induced by the elevation of intracellular $Ca^{2+}$, $Mg^{2+}$ and ROS concentration, and a reduction of pH value and mitochondria membrane potential (MMP).

Mitochondrial Damage and Metabolic Compensatory Mechanisms Induced by Hyperoxia in the U-937 Cell Line

  • Scatena, Roberto;Messana, Irene;Martorana, Giuseppe Ettore;Gozzo, Maria Luisa;Lippa, Silvio;Maccaglia, Alessandro;Bottoni, Patrizia;Vincenzoni, Federica;Nocca, Giuseppina;Castagnola, Massimo;Giardina, Bruno
    • BMB Reports
    • /
    • v.37 no.4
    • /
    • pp.454-459
    • /
    • 2004
  • Experimental hyperoxia represents a suitable in vitro model to study some pathogenic mechanisms related to oxidative stress. Moreover, it allows the investigation of the molecular pathophysiology underlying oxygen therapy and toxicity. In this study, a modified experimental set up was adopted to accomplish a model of moderate hyperoxia (50% $O_2$, 96 h culture) to induce oxidative stress in the human leukemia cell line, U-937. Spectrophotometric measurements of mitochondrial respiratory enzyme activities, NMR spectroscopy of culture media, determination of antioxidant enzyme activities, and cell proliferation and differentiation assays were performed. The data showed that moderate hyperoxia in this myeloid cell line causes: i) intriguing alterations in the mitochondrial activities at the levels of succinate dehydrogenase and succinate-cytochrome c reductase; ii) induction of metabolic compensatory adaptations, with significant shift to glycolysis; iii) induction of different antioxidant enzyme activities; iv) significant cell growth inhibition and v) no significant apoptosis. This work will permit better characterization the mitochondrial damage induced by hyperoxia. In particular, the data showed a large increase in the succinate cytochrome c reductase activity, which could be a fundamental pathogenic mechanism at the basis of oxygen toxicity.

Effects of Korean Ginseng(Panax Ginseng, C. A. Meyer) Extracts on Rat Exposed to Heat Environment (고려인삼 추출물이 고온환경에 노출된 흰쥐에 미치는 영향)

  • Hong, Hee-Do;Kim, Young-Chan;Choi, Sang-Yoon;Rho, Jeong-Hae;Lee, Young-Chul;Seo, Joo-Yeon
    • Journal of Ginseng Research
    • /
    • v.30 no.4
    • /
    • pp.199-205
    • /
    • 2006
  • It was investigated that how the periodic exposure to heat environment, and the treatment of korean white and red ginseng extracts had effects on the weight, diet uptake, blood components, organ weight, and the lipid peroxidation of liver in male S.D. rats. In the result of experiments using rats, chronic heat environment for 7 days at $38^{\circ}C$, 5 hrs per day, induced significant decrease of an average increase rate of body weight, but diet uptake was not affected clearly. In heat environment, the number of red blood cells and hemoglobin were not changed, but the number of white blood cells was significantly increased. The liver weight against body weight was decreased in rats. Also, MDA contents, related to lipid peroxidation, were remarkably increased in rat liver by heat environment. These physiological changes were attenuated by treatments of white and red ginseng extracts before and after exposure to heat environment, particularly in growth rate and lipid peroxidation of liver in rats. Also, red ginseng extracts had a better effect, though it was not that significant, than the white ginseng on the inhibition of lipid peroxidation and the weight change of liver. Although the investigation on the effective components and the study on the activity changes of associated materials are needed to perform, these present results imply that Korean ginseng may contribute to protection of body homeostasis against drastic climate changes.

High Pressure Extraction Process of Low Quality Fresh Ginseng for Enhancing Anticancer Activities (파삼의 항암활성 증진이 가능한 고압 추출 공정)

  • Ha, Ji-Hye;Kim, Young;Jeong, Seung-Seop;Jeong, Myoung-Hoon;Jeong, Heon-Sang;Jeong, Jae-Hyun;Yu, Kwang-Wan;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.6
    • /
    • pp.397-406
    • /
    • 2009
  • The low quality fresh ginseng was extracted by water at $80^{\circ}C$ and 240 bar for 20 min (HPE, High pressure extraction process). The cytotoxicity on human normal kidney cell (HEK293) and human normal lung cell (HEL299) of the extracts from HPE showed 28.43% and 21.78% lower than that from conventional water extraction at $100^{\circ}C$ in adding the maximum concentration of $1.0\;mg/m{\ell}$. The human breast carcinoma cell and lung adenocarcinoma cell growth were inhibited up to about 86%, in adding $1.0\;mg/m{\ell}$ of extracts from HPE. This values were 9-12% higher than those from conventional water extraction. On in vivo experiment using ICR mice, the variation of body weight of mice group treated fresh ginseng extracts from HPE of 100 mg/kg/day concentration was very lower than control and other group. The extracts from HPE was showed longer survival times as 35.65% than that of the control group, and showed the highest tumor inhibition activities compared with other group, which were 70.64% on Sarcoma-180 solid tumor cells. On the high performance liquid chromatogram (HPLC), amount of ginsenoside-$Rg_2$, $Rg_3$, $Rh_1$ and $Rh_2$ on fresh ginseng were increased up to 43-183% by HPE, compared with conventional water extracts. These data indicate that HPE definitely plays an important role in effectively extracting ginsenoside, which could result in improving anticancer activities. It can be concluded that low quality fresh ginseng associated with this process has more biologically compound and better anticancer activities than that from normal extraction process.

Detection of Endolichenic Fungi Producing Antifungal Compound (항진균성 물질을 생산하는 지의류 내생 곰팡이의 탐색)

  • Kim, Eun-Sung;Choi, Kap-Seong;Choi, Sang-Ki
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.1
    • /
    • pp.23-29
    • /
    • 2012
  • To isolate a novel antifungal compound, we obtained 100 kinds of endolichenic fungi from Korean Lichen & Allied Bioresources Center and examined their antifungal capability. Three fungi Usnea rigidula (2326), Parmotrema pseudotinctorum (2202) and Myelochroa sp. (2292) showed high antifungal activity against Candida albicans when they grew in both liquid and solid media. We extracted the culture supernatants of these three fungi with chloroform and then with ethyl acetate. Chloroform fraction exhibited the highest antifungal activities when those fractions were examined for the growth inhibition of Candida albicans with disc diffusion method. The chloroform faction was on further analysis with $C_{18}$ column chromatography to see whether the inhibitors are already known or not. Two peak fractions were collected from 4-day culture extract for Usnea rigidula and from 6-day culture extract for Parmotrema pseudotinctorum on the HPLC. A peak fraction from chloroform extracts of 4-day culture filtrate of Parmotrema pseudotinctorum showed higher antifungal activities against C. albicans and C. glabrata than another peak fraction. It appears that the antifungal materials are relatively nonpolar as usnic acid often found in lichenic fungi.

Delphinidin Chloride Effects on the Expression of TNF-$\alpha$ Induced Cell Adhesion Molecules (TNF-$\alpha$에 의해 유도된 세포부착분자의 발현에 대한 Delphinidin chloride의 억제 효과)

  • Koh, Eun-Gyeong;Chae, Soo-Chul;Seo, Eun-Sun;Na, Myung-Suk;Lee, Jong-Bin
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.1
    • /
    • pp.88-94
    • /
    • 2009
  • The process of atherosclerosis begins through secretion of inflammatory cytokine or adhesion of leukocyte from damage in blood vessels and transmigration. This study was conducted to investigate the effects of delphinidin chloride (DC) in the initial process of atherosclerosis on the expression of ICAM-1 (Intracellular Adhesion Molecule-1) and VCAM-1 (Vascular Adhesion Molecule-1) related to adhesion of leukocyte at the HUVEC (human umbilical vein endothelial cell line. As a result, cell growth inhibition rate at 50 ${\mu}M$ was respectively 4, 3 and 5% without cell toxicity. As a result of morphological observation monocyte-endothelial cell adhesion assay and optical microscope carried out to measure attachment of mononuclear cells to endothelial cells induced by Tumor necrosis factor-alpha (TNF-$\alpha$) at concentrations without cell toxicity, DC concentration-dependently suppressed attachment. When effects on the expression of VCAM-1 and ICAM-1, cell adhesion molecules induced from endothelial cells by TNF-$\alpha$, were comparatively analyzed using western blot analysis and RT-PCR methods, protein of VCAM-1 and ICAM-1 and expression at the level of mRNA were concentration-dependently reduced. Taken together, the results of this studies provide evidence that DC possess an anti-metastatic activity.

Saprolegnia parasitica Isolated from Rainbow Trout in Korea: Characterization, Anti-Saprolegnia Activity and Host Pathogen Interaction in Zebrafish Disease Model

  • Shin, Sangyeop;Kulatunga, D.C.M.;Dananjaya, S.H.S.;Nikapitiya, Chamilani;Lee, Jehee;De Zoysa, Mahanama
    • Mycobiology
    • /
    • v.45 no.4
    • /
    • pp.297-311
    • /
    • 2017
  • Saprolegniasis is one of the most devastating oomycete diseases in freshwater fish which is caused by species in the genus Saprolegnia including Saprolegnia parasitica. In this study, we isolated the strain of S. parasitica from diseased rainbow trout in Korea. Morphological and molecular based identification confirmed that isolated oomycete belongs to the member of S. parasitica, supported by its typical features including cotton-like mycelium, zoospores and phylogenetic analysis with internal transcribed spacer region. Pathogenicity of isolated S. parasitica was developed in embryo, juvenile, and adult zebrafish as a disease model. Host-pathogen interaction in adult zebrafish was investigated at transcriptional level. Upon infection with S. parasitica, pathogen/antigen recognition and signaling (TLR2, TLR4b, TLR5b, NOD1, and major histocompatibility complex class I), pro/anti-inflammatory cytokines (interleukin $[IL]-1{\beta}$, tumor necrosis factor ${\alpha}$, IL-6, IL-8, interferon ${\gamma}$, IL-12, and IL-10), matrix metalloproteinase (MMP9 and MMP13), cell surface molecules ($CD8^+$ and $CD4^+$) and antioxidant enzymes (superoxide dismutase, catalase) related genes were differentially modulated at 3- and 12-hr post infection. As an anti-Saprolegnia agent, plant based lawsone was applied to investigate on the susceptibility of S. parasitica showing the minimum inhibitory concentration and percentage inhibition of radial growth as $200{\mu}g/mL$ and 31.8%, respectively. Moreover, natural lawsone changed the membrane permeability of S. parasitica mycelium and caused irreversible damage and disintegration to the cellular membranes of S. parasitica. Transcriptional responses of the genes of S. parasitica mycelium exposed to lawsone were altered, indicating that lawsone could be a potential anti-S. parasitica agent for controlling S. parasitica infection.

Differential effects of type 1 diabetes mellitus and subsequent osteoblastic β-catenin activation on trabecular and cortical bone in a mouse mode

  • Chen, Sixu;Liu, Daocheng;He, Sihao;Yang, Lei;Bao, Quanwei;Qin, Hao;Liu, Huayu;Zhao, Yufeng;Zong, Zhaowen
    • Experimental and Molecular Medicine
    • /
    • v.50 no.12
    • /
    • pp.3.1-3.14
    • /
    • 2018
  • Type 1 diabetes mellitus (T1DM) is a pathological condition associated with osteopenia. $WNT/{\beta}$-catenin signaling is implicated in this process. Trabecular and cortical bone respond differently to $WNT/{\beta}$-catenin signaling in healthy mice. We investigated whether this signaling has different effects on trabecular and cortical bone in T1DM. We first established a streptozotocin-induced T1DM mouse model and then constitutively activated ${\beta}$-catenin in osteoblasts in the setting of T1DM (T1-CA). The extent of bone loss was greater in trabecular bone than that in cortical bone in T1DM mice, and this difference was consistent with the reduction in the expression of ${\beta}$-catenin signaling in the two bone compartments. Further experiments demonstrated that in T1DM mice, trabecular bone showed lower levels of insulin-like growth factor-1 receptor (IGF-1R) than the levels in cortical bone, leading to lower $WNT/{\beta}$-catenin signaling activity through the inhibition of the IGF-1R/Akt/glycogen synthase kinase $3{\beta}$ ($GSK3{\beta}$) pathway. After ${\beta}$-catenin was activated in T1-CA mice, the bone mass and bone strength increased to substantially greater extents in trabecular bone than those in cortical bone. In addition, the cortical bone of the T1-CA mice displayed an unexpected increase in bone porosity, with increased bone resorption. The downregulated expression of WNT16 might be responsible for these cortical bone changes. In conclusion, we found that although the activation of $WNT/{\beta}$-catenin signaling increased the trabecular bone mass and bone strength in T1DM mice, it also increased the cortical bone porosity, impairing the bone strength. These findings should be considered in the future treatment of T1DM-related osteopenia.