• 제목/요약/키워드: groundwater pumping

검색결과 321건 처리시간 0.04초

Numerical Simulation of Water Table Drawdown due to Groundwater Pumping in a Contaminated Aquifer System at a Shooting Test Site, Pocheon, Korea

  • Kihm, Jung-Hwi;Hwang, Gisub
    • 자원환경지질
    • /
    • 제54권2호
    • /
    • pp.247-257
    • /
    • 2021
  • The study area has been contaminated with explosive materials and heavy metals for several decades. For the design of the pump and treat remediation method, groundwater flow before and during groundwater pumping in a contaminated aquifer system was simulated, calibrated, and predicted using a generalized multidimensional hydrological numerical model. A three-dimensional geologic formation model representing the geology, hydrogeology, and topography of the aquifer system was established. A steady-state numerical simulation with model calibration was performed to obtain initial steady-state spatial distributions of groundwater flow and groundwater table in the aquifer system before groundwater pumping, and its results were illustrated and analyzed. A series of transient-state numerical simulations were then performed during groundwater pumping with the four different pumping rates at a potential location of the pumping well. Its results are illustrated and analyzed to provide primary reference data for the pump and treat remediation method. The results of both steady-state and transient-state numerical simulations show that the spatial distribution and properties of the geologic media and the topography have significant effects on the groundwater flow and thus depression zone.

지하수 양수 모의를 위한 SWMM의 수정 (A Modification of SWMM for a Groundwater Pumping Simulation)

  • 이상호;이정민
    • 한국물환경학회지
    • /
    • 제23권5호
    • /
    • pp.628-635
    • /
    • 2007
  • As the hydrologic cycle is transformed by the expansion of impermeable area as a result of the urbanization, the function of an ecosystem is deteriorated by the transformed hydrologic cycle. In this study, a SWMM code was modified to have a groundwater pumping option about rivers-aquifer interaction to be possible. The modified SWMM was applied to continuous simulations of urban runoff from Hakuicheon watershed and it was used to analyse the effect of a groundwater pumping. The modified SWMM overcame the limitation of the ground subroutine that it only simulate groundwater inflow from ground to rivers. The result of continuous simulation of groundwater pumping is that surface runoff, groundwater runoff and groundwater level are well simulated, and Modified SWMM expressed groundwater runoff by negative number (-) when groundwater level is less than river stage.

자연하도 하구부에서 갈수시 양수에 의한 지하수 유독특성 및 취수능력 결정에 관한 연구 (Study on the Characteristics of Groundwater Movement Caused by Pumping During Drought Period and Estimation of Pumping Capacity in Natural River Estuary)

  • 안승섭;최윤영
    • 한국농공학회지
    • /
    • 제39권6호
    • /
    • pp.88-98
    • /
    • 1997
  • In this study, pumping capacity in the area of natural river estuary is estimated by the quantitative analysis using finite element method. The study area is Iga-ri pumping station in the estuary of Seojung-chun which runs to the East coast. First of aH, hydraulic properties and effects of different seawater levels are analyzed in this area. Variations of groundwater level caused by pumping and properties of seawater intrusion are analyzed, then compared the case of reinforcing the existing intake weir with the case of setting up an weir at the upper stream. The observed data of groundwater drawdown caused by pumping during drought period and seawater intrusion are compared with results of the analysis done by groundwater model using finite element method, and it is found that both are similar. Accordingly, groundwater model used in this study reflects well the variation of groundwater level caused by pumping.

  • PDF

강변여과수 취수에 따른 지하수위의 계절적인 변동 특성

  • 정재열;함세영;이정환;김형수;류상훈;김태원;김문수
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2006년도 총회 및 춘계학술발표회
    • /
    • pp.68-71
    • /
    • 2006
  • Seasonal fluctuation of groundwater level by pumping amount and stream discharge at the riverbank filtrate site adjacent to the Nakdong River in Daesan-Myeon was characterized. Groundwater level fluctuation shows increase in wet season (June, July, August and September) and decrease in dry season (the other months). Seasonal variation of pumping amount shows similar trend to the groundwater fluctuation due to higher consumption of potable water in summer. The relation of specific capacity, Nakdong River and pumping quantity was analyzed. The logarithmic relationship between specific capacity and the stream discharge gives high correlation coefficient, 0.96. This fact indicates that the increase of stream discharge rate reduces the rate of drawdown in the pumping area in wet season.

  • PDF

상주시 임곡리 굴착공의 적정양수량 결정 (Optimal Pumping Rate of a Water Well at Imgokri, Sangju City)

  • 조병욱;윤욱;문상호;이병대;조수영;김용철;황세호;신제현;하규철
    • 지질공학
    • /
    • 제27권3호
    • /
    • pp.255-265
    • /
    • 2017
  • 상주시 임곡리에 굴착된 심도 100 m 지하수공(PW-2)의 적정양수량을 산정하였다. 시추코아와, 물리검층 자료에 의하면 지하수 산출 심도는 26.1~26.5, 28.0~30.0, 33, 58, 71 m로 해석된다. 단계양수시험에 의하면 40, 55, 70, 90, $132m^3/d$의 양수량으로 70일간 양수시 수위강하량은 각각 6.48, 11.56, 18.07, 28.99, 60.26 m로 예상되었다. $117m^3/d$으로 250분간 실시한 일정량양수시험에서는 양수 경과시간 120~150분에 영향추가 불투수층 경계조건에 도달하여 급격한 수위강하가 일어나 PW-2의 한계채수량은 $90m^3/d$로 산정하였으며 이때의 수위강하량은 28.82~31.27 m이다. 적정양수량은 한계채수량의 범위내의 정류상태여야 하기 때문에 PW-2의 적정양수량은 $70{\sim}90m^3/d$로 제시하였다. 불투수층 경계조건에서 직선의 기울기가 급해지며 지하수의 DO와 ORP가 증가하는 것으로 보아 PW-2를 중심으로 한 기반암지하수의 발달은 제한적인 것으로 추정된다.

Groundwater use management using existing wells to cope with drought

  • Amos, Agossou;Yang, Jeong-Seok
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.450-450
    • /
    • 2022
  • The study aims to develop scenarios for efficient groundwater use using existing wells in order to prepare for an eventual drought. In the recent decades, droughts are not only intensifying, but they are also spreading into territories where droughts used to be less intense and relatively infrequent. With the increasing disaster, efficient groundwater use is urgently needed not only to prevent the problem of groundwater depletion but also drought risk reduction. Thus, the research addressed the problem of efficient aquifer use as source of water during drought and emergencies. The research focused on well network system applied to Yanggok-ri in Korea using simulation models in visual MODFLOW. The approach consists to variate groundwater pumping rate in the most important wells used for irrigation across the study area and evaluate the pumping effect on water level fluctuation. From the evaluation, the pumping period, appropriate pumping rate of each well and the most vulnerable wells are determined for a better groundwater management. The project results divide the study area into two different regions (A and B), where the wells in the region A (western part of the region) show a crucial drop in water level from May to early July and in august as consequence of water pumping. While wells in region B are also showing a drawdown in groundwater level but relatively less compare to region A. The project suggests a scenarios of wells which should operate considering water demand, groundwater level depletion and daily pumping rate. Well Network System in relevant project, by pumping in another well where water is more abundant and keep the fixed storage in region A, is a measure to improve preparedness to reduce eventual disaster. The improving preparedness measure from the project, indicates its implication to better groundwater management.

  • PDF

Determination of the Optimal Strategy for Pump-And-Treat Method

  • Ko, Nak-Youl;Lee, Kang-Kun
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2001년도 추계학술발표회
    • /
    • pp.204-207
    • /
    • 2001
  • An optimization process for the design of groundwater remediation is developed by simultaneously considering the well location and the pumping rate. This process uses two independent models: simulation and optimization model. Groundwater flow and contaminant transport are simulated with MODFLOW and MT3D in simulation model. In optimization model, the location and pumping rate of each well are determined and evaluated by the genetic algorithm. In a homogeneous and symmetric domain, the developed model is tested using sequential pairs for pumping rate of each well, and the model gives more improved result than the model using sequential pairs. In application cases, the suggested optimal design shows that the main location of wells is on the centerline of contaminate distribution. The resulting optimal design also shows that the well with maximum pumping rate is replaced with the further one from the contaminant source along flow direction and that the optimal pumping rate declines when more cleanup time is given. But the optimal pumping rate is not linearly proportional to the cleanup time and the minimum total pumping volume does not coincide with the optimal pumping rate.

  • PDF

단일 관정 지하수 양수에 따른 하천수 감소량 평가 (Assessment of Streamflow Depletion Due to Groundwater Pumping from a Well)

  • 이정우;김남원;정일문
    • 한국수자원학회논문집
    • /
    • 제46권11호
    • /
    • pp.1079-1088
    • /
    • 2013
  • 지하수 양수정의 위치는 대수층내 지하수 유동과 하천-대수층의 상호작용에 영향을 미치므로 효과적인 지하수 개발 이용 및 하천수 관리를 위해서는 개별적인 지하수 관정의 양수 위치에 따른 하천수량 변화를 정량적으로 분석하는 과정이 선행되어야 한다. 따라서 본 연구에서는 경기도 이천에 위치한 신둔천 유역에 대해서 단일 관정으로부터의 지하수 양수가 인근 하천구간에 미치는 영향을 지표수-지하수 통합모형 SWAT-MODFLOW를 이용하여 모의, 분석하였다. 유역내에 존재하는 지하수 관정들 중 임의로 50개를 선별하고 각각의 단일 관정의 양수로 인한 인접 및 하류부 하도 구간의 하천수 감소에 미치는 영향을 평가하였고, 특히 양수로 인한 하천 영향 판별 지표로 많이 사용되고 있는 하천고갈인자 및 하천바닥인자의 적용성을 검토하였다. 각각의 단일 관정의 지하수 양수 전 후의 하천유량을 비교한 결과 양수량 대비 하천수 감소량은 작게는 20% 미만에서 크게는 90%가 넘는 등 지역 및 하천-관정 이격거리에 따라 큰 차이를 나타내었다. 하천고갈인자와 하천바닥인자 모두 하천수감소량과는 상관성이 높지 않아 양수로 인한 하천에 미치는 영향을 판정하는 절대적인 기준이 될 수는 없는 것으로 분석되었다. 하지만, 하천-관정 이격거리가 약 500 m 이내인 경우에는 하천바닥인자는 하천 영향정도를 평가하는 지표로 사용이 가능할 것으로 분석되었다.

지하수 모델링 기법을 이용한 인공함양정 최적 위치 평가 (Determining Optimal Locations of an Artificial Recharge Well using an Optimization-coupled Groundwater Flow Model)

  • 이현주;구민호;김용철
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제19권3호
    • /
    • pp.66-81
    • /
    • 2014
  • A Fortran program was developed to determine the optimal locations of an artificial recharge well. Three objective functions were considered: (1) maximizing the recovery rates, (2) maximizing the injection rates, and (3) minimizing the coefficient of variation of the increased pumping rates. We also suggested a new aggregate objective function which combined the first and the third objective functions. The model results showed that locating the injection well inside the cluster of pumping wells was desirable if either the recovery or the injection rate was taken into account. However, the injection well located outside the cluster evenly increased the pumping rates in existing pumping wells. Therefore, for clustered pumping wells, installing an injection well at the center or the upstream of the pumping wells seems beneficial. For linear arrangement of pumping wells parallel to the constant head boundary, locating the injection well in the upstream was recommended. On the contrary, in case of the linear arrangement perpendicular to the constant head boundary, the injection well installed on both sides of the central part of the pumping wells was preferable.

Improving the Genetic Algorithm for Maximizing Groundwater Development During Seasonal Drought

  • Chang, Sun Woo;Kim, Jitae;Chung, Il-Moon;Lee, Jeong Eun
    • 지질공학
    • /
    • 제30권4호
    • /
    • pp.435-446
    • /
    • 2020
  • The use of groundwater in Korea has increased in recent years to the point where its extraction is restricted in times of drought. This work models the groundwater pumping field as a confined aquifer in a simplified simulation of groundwater flow. It proposes a genetic algorithm to maximize groundwater development using a conceptual model of a steady-state confined aquifer. Solving the groundwater flow equation numerically calculates the hydraulic head along the domain of the problem; the algorithm subsequently offers optimized pumping strategies. The algorithm proposed here is designed to improve a prior initial groundwater management model. The best solution is obtained after 200 iterations. The results compare the computing time for five simulation cases. This study shows that the proposed algorithm can facilitate better groundwater development compared with a basic genetic algorithm.