• Title/Summary/Keyword: ground improvement effect

Search Result 351, Processing Time 0.037 seconds

Numerical Analysis of Grout Flow and Injection Pressure Affected by Joint Roughness and Aperture (절리 거칠기와 간극 변화에 따른 그라우트 유동과 주입압에 관한 수치해석적 연구)

  • Jeon, Ki-Hwan;Ryu, Dong-Woo;Kim, Hyung-Mok;Park, Eui-Seob;Song, Jae-Jun
    • Tunnel and Underground Space
    • /
    • v.20 no.2
    • /
    • pp.82-91
    • /
    • 2010
  • Grouting technology is one of the ground improvement methods used in water controlling and reinforcement of rock mass in underground structure construction. It is necessarily required to find out the characteristics of grout flow through discontinuities in a rock mass for an adequate grout design and performance assessment. Laminar flow is not always applicable in simulating a grout flow in a rock mass, since the rock joints usually have apertures at a micro-scale and the flow through these joints is affected by the joint roughness and the velocity profile of the flow changes partially near the roughness. Thus, the influence of joint roughness and aperture on the grout flow in rough rock joint was numerically investigated in this study. The commercial computational fluid dynamics code, FLUENT, was applied for this purpose. The computed results by embedded Herschel-Bulkley model and VOF (volume of fluid) model, which are applicable to simulate grout flow in a narrow rock joint that is filled with air and water, were well compared with that of analytical results and previously published laboratory test for the verification. The injection pressure required to keep constant injection rate of grout was calculated in a variety of Joint Roughness Coefficient (JRC) and aperture conditions, and the effect of joint roughness and aperture on grout flow were quantified.

Entomopathogenic Fungi-mediated Pest Management and R&D Strategy (곤충병원성 진균을 활용한 해충 관리와 개발 전략)

  • Lee, Se Jin;Shin, Tae Young;Kim, Jong-Cheol;Kim, Jae Su
    • Korean journal of applied entomology
    • /
    • v.61 no.1
    • /
    • pp.197-210
    • /
    • 2022
  • Entomopathogenic fungi can be used to control a variety of sucking and chewing insects, with little effect on beneficial insects and natural enemies. Approximately 170 entomopathogenic fungal insecticides have been registered and used worldwide, with the recent focus being on the mode of action and mechanism of insect-fungal interactions. During the initial period of research and development, the industrialization of entomopathogenic fungi focused on the selection of strains with high virulence. However, improvement in productivity, including securing resistance to environmental stressors, is a major issue that needs to be solved. Although conidia are the primary application propagules, efforts are being made to overcome the limitations of blastospores to improve the economic feasibility of the production procedure. Fungal transformation is also being conducted to enhance insecticidal activity, and molecular biology is being used to investigate functions of various genes. In the fungi-based pest management market, global companies are setting up cooperative platforms with specialized biological companies in the form of M&As or partnerships with the aim of implementing a tank-mix strategy by combining chemical pesticides and entomopathogenic fungi. In this regard, understanding insect ecology in the field helps in providing more effective fungal applications in pest management, which can be used complementary to chemicals. In the future, when fungal applications are combined with digital farming technology, above-ground applications to control leaf-dwelling pests will be more effective. Therefore, for practical industrialization, it is necessary to secure clear research data on intellectual property rights.

Effect of Viscosity and Clogging on Grout Penetration Characteristics (점도 변화와 폐색 현상을 고려한 그라우트재의 침투 특성)

  • Kim, Jong-Sun;Choi, Yong-Ki;Park, Jong-Ho;Woo, Sang-Baik;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.5-13
    • /
    • 2007
  • Many construction projects adopt grouting technology to prevent the leakage of groundwater or to improve the shear strength of the ground. Recognition as a feasible field procedure dates back to 1925. Since then, developments and field use have increased rapidly. According to improvement of grout materials, theoretical study on grout penetration characteristics is demanded. Fluid of grout always tends to flow from higher hydraulic potential to lower one and the motion of grout is also a function of formation permeability. Viscosity of pout is changed by chemical action while grout moves through pores. Due to the increment of viscosity, permeability is decreased. Permeability is also reduced by grout particle deposits to the soil aggregates. In this paper, characteristics of new cement grout material that has been developed recently are studied: injectable volume of new grout material is tested in two different grain sizes of sands; and the method to calculate injectable volume of grout Is suggested with consideration of change in viscosity and clogging phenomena. The calculated values are compared with injection test results. Viscosity of new grout material is found to increase as an exponential function of time. And lumped parameter $\delta$ of new grout material to be used for assessing deposition characteristics is estimated by comparing deposit theory with injection test results considering different soil types and different injection pressures. Injection test results show that grout penetration rate is decreased by the increase of grout viscosity and clogging phenomena.

A Research on Applicability of Drone Photogrammetry for Dam Safety Inspection (드론 Photogrammetry 기반 댐 시설물 안전점검 적용성 연구)

  • DongSoon Park;Jin-Il Yu;Hojun You
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.30-39
    • /
    • 2023
  • Large dams, which are critical infrastructures for disaster prevention, are exposed to various risks such as aging, floods, and earthquakes. Better dam safety inspection and diagnosis using digital transformation technologies are needed. Traditional visual inspection methods by human inspectors have several limitations, including many inaccessible areas, danger of working at heights, and know-how based subjective inspections. In this study, drone photogrammetry was performed on two large dams to evaluate the applicability of digital data-based dam safety inspection and propose a data management methodology for continuous use. High-quality 3D digital models with GSD (ground sampling distance) within 2.5 cm/pixel were generated by flat double grid missions and manual photography methods, despite reservoir water surface and electromagnetic interferences, and severe altitude differences ranging from 42 m to 99.9 m of dam heights. Geometry profiles of the as-built conditions were easily extracted from the generated 3D mesh models, orthomosaic images, and digital surface models. The effectiveness of monitoring dam deformation by photogrammetry was confirmed. Cracks and deterioration of dam concrete structures, such as spillways and intake towers, were detected and visualized efficiently using the digital 3D models. This can be used for safe inspection of inaccessible areas and avoiding risky tasks at heights. Furthermore, a methodology for mapping the inspection result onto the 3D digital model and structuring a relational database for managing deterioration information history was proposed. As a result of measuring the labor and time required for safety inspection at the SYG Dam spillway, the drone photogrammetry method was found to have a 48% productivity improvement effect compared to the conventional manpower visual inspection method. The drone photogrammetry-based dam safety inspection is considered very effective in improving work productivity and data reliability.

A Study on Legal Comparison Review of the Pilot's License System of WIG Ship(surface-flying ship) and Pilot Certification System of Aircraft (수면비행선박 조종사 면허제도와 항공기 조종사 자격증명제도의 법적 비교 검토)

  • Park, Sang-Yong
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.35 no.3
    • /
    • pp.95-126
    • /
    • 2020
  • In 2017, the world's first WIG ship (WIG: Wing In-Ground) pilot's license written test was conducted in Korea. The WIG ship is a ship that combines the characteristics of ships and airplanes. Therefore, the pilot of the WIG ship was allowed to apply only for those who had the aircraft pilot's license and the 6th class marine nautical license. The WIG ship pilot's license system was first introduced by Korea, so there are no international standards for the license system, and the introduction of a domestic qualification system also requires institutional arrangements due to various restrictions such as pilot training. However, in order to become a valuable industry as a future growth engine for the ocean, several urgent problems need to be solved, and that is the training of manpower for WIG ships. Therefore, I reviewed the institutional issues related to pilot training as this subject. Since 2001, various countries around the world have been discussing this issue, centering on IMO, and Korea has continued to participate and cooperate in IMO meetings. And the national qualification test for surface flying ships was conducted in Korea from 2011. However, there are still problems to be solved, and I pointed out the advancement of the manpower training system, the education and training system, and the designated national educational institution system. As a solution to this, it was suggested through the improvement of the license system and the operation of designated educational institutions. Among these solutions, I believe that the best way is to entrust the operation of designated national educational institutions to private educational institutions. However, I propose a plan that the government entrusts to private educational institutions, but the government is responsible for licensing and supervision. WIG ship will be a new market for the aviation industry and aviation workers.

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2014 (설비공학 분야의 최근 연구 동향: 2014년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.7
    • /
    • pp.380-394
    • /
    • 2015
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2014. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of heat and mass transfer, cooling and heating, and air-conditioning, the flow inside building rooms, and smoke control on fire. Research issues dealing with duct and pipe were reduced, but flows inside building rooms, and smoke controls were newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for thermal contact resistance measurement of metal interface, a fan coil with an oval-type heat exchanger, fouling characteristics of plate heat exchangers, effect of rib pitch in a two wall divergent channel, semi-empirical analysis in vertical mesoscale tubes, an integrated drying machine, microscale surface wrinkles, brazed plate heat exchangers, numerical analysis in printed circuit heat exchanger. In the area of pool boiling and condensing, non-uniform air flow, PCM applied thermal storage wall system, a new wavy cylindrical shape capsule, and HFC32/HFC152a mixtures on enhanced tubes, were actively studied. In the area of industrial heat exchangers, researches on solar water storage tank, effective design on the inserting part of refrigerator door gasket, impact of different boundary conditions in generating g-function, various construction of SCW type ground heat exchanger and a heat pump for closed cooling water heat recovery were performed. (3) In the field of refrigeration, various studies were carried out in the categories of refrigeration cycle, alternative refrigeration and modelling and controls including energy recoveries from industrial boilers and vehicles, improvement of dehumidification systems, novel defrost systems, fault diagnosis and optimum controls for heat pump systems. It is particularly notable that a substantial number of studies were dedicated for the development of air-conditioning and power recovery systems for electric vehicles in this year. (4) In building mechanical system research fields, seventeen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the evaluation of work noise in tunnel construction and the simulation and development of a light-shelf system. The subjects of building energy were worked on the energy saving of office building applied with window blind and phase change material(PCM), a method of existing building energy simulation using energy audit data, the estimation of thermal consumption unit of apartment building and its case studies, dynamic window performance, a writing method of energy consumption report and energy estimation of apartment building using district heating system. The remained studies were related to the improvement of architectural engineering education system for plant engineering industry, estimating cooling and heating degree days for variable base temperature, a prediction method of underground temperature, the comfort control algorithm of car air conditioner, the smoke control performance evaluation of high-rise building, evaluation of thermal energy systems of bio safety laboratory and a development of measuring device of solar heat gain coefficient of fenestration system.

Experimental Study on Modular Community Planting for Natural Forest Restoration (자연림 복원을 위한 모듈군락식재 실험연구)

  • Han, Yong-Hee;Park, Seok-Gon
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.3
    • /
    • pp.338-349
    • /
    • 2022
  • This study aims to investigate whether modular community planting, which entailed planting a variety of species of seedlings at high density, was more effective in restoring natural forests than the existing mature tree planting. We also investigated whether the planting density of the modular community planting facilitates growth or improves the tree layer coverage. We conducted outdoor experiments in which the samples were divided into a mature tree planting plot (control plot), where mature trees were planted at wide intervals, and a modular community planting (MCP) plot (treatment plot), where multiple seedlings were planted in high density. The MCP plot was further divided into the plot in which 3 seedlings were planted per m2 and the plot of 1 seedling per m2. We measured the specimens' survival rate, growth rate (tree height, crown width, and root collar diameter), and cover rate for 26 months from May 2019 and the predicted future tree height growth using the measured tree height. The survival rate and relative growth rate of the MCP were higher than those of the mature tree planting plot. The vertical coverage rate of the tree crown in the MCP exhibited complete coverage of the ground before 23 months, while the coverage rate of the mature tree planting decreased due to transplantation stress. The seedlings in the MCP, which were planted at high density, grew well and were predicted to grow higher than the mature trees in the large tree planting plot within 5 to 6.5 years after planting. It was due to multiple species, seedlings, high-density planting, and planting foundation improvements, such as soil enhancement and mulching. In other words, the seedlings planted in the MCP had a higher survival rate as their environmental adaptation after planting was better, and their early growth was also larger than the trees in the mature planting plot. The high-density mixed planting of various native species not only mitigated the inter-complementary environmental pressures but also facilitated growth by inducing competition between species. Moreover, the planting foundation improvement effectively increased the seedlings' viability and growth rate. A reduction in follow-up management costs is expected as the tree layer coverage sharply increases due to the higher planting density. In the MCP (3 seedlings per m2 and 1 seedling per m2), the tree height growth was promoted with the higher planting density, and the crown width and root collar diameter tended to be larger with the lower planting density, but these differences were not statistically significant.

Effect of Cool-season Grass Overseeding on Turf Quality, Green Period and Turf Density in Zoysiagrass Lawn (한국잔디에 한지형잔디 덧파종에 따른 잔디품질, 녹색기간 및 밀도에 미치는 영향)

  • Han, Sang-Wook;Soh, Ho-Sup;Choi, Byoung-Rourl;Won, Seon-Yi;Lee, Sang-Deok;Kang, Chang-Sung
    • Weed & Turfgrass Science
    • /
    • v.6 no.4
    • /
    • pp.333-344
    • /
    • 2017
  • This study was conducted to examine the effect of cool-season grass overseeding on the green period, turf quality and density in zoysiagrass lawn. Treatments were perennial ryegrass (PR) overseeding ($60g\;m^{-2}$) on medium-leaf type zoysiagrass, Kentucky bluegrass (KB) overseeding ($20g\;m^{-2}$) on medium-leaf type zoysiagrass and narrow-leaf type zoysiagrass, and no overseeding on medium-leaf type zoysiagrass. Overseeding of KB or PR effectively provided quality improvement of zoysiagrass lawn by extending green-period about one month in spring and two months in fall season. PR overseeding showed quick green cover within 2-3 weeks but decreased the quality of overseeded zoysiagrass lawn during the summer season. Whereas, KB overseeding showed slow green cover taking two to three month after seeding but provided stable and good turf quality throughout the years. KB or PR overseeding significantly increased the turf density of zoysiagrass lawn except the period of summer depression of PR. The ground coverage of cool-season grasses ranged from 30 to 80% with considerable seasonal variation. As a result, KB and PR have their strengths and weaknesses as an overseeding material. Thus, the use of KB and PR as a mixture would provide better overseeding performance in zoysiagrass lawn.

Evaluation of Drainage Improvement Effect Using Geostatistical Analysis in Poorly Drained Sloping Paddy Soil (경사지 배수불량 논에서 배수개선 효과의 지구통계적 기법을 이용한 평가)

  • Jung, Ki-Yuol;Yun, Eul-Soo;Park, Ki-Do;Park, Chang-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.804-811
    • /
    • 2010
  • The lower portion of sloping paddy fields normally contains excessive moisture and the higher water table caused by the inflow of ground water from the upper part of the field resulting in non-uniform water content distribution. Four drainage methods namely Open Ditch, Vinyl Barrier, Pipe Drainage and Tube Bundle for multiple land use were installed within 1-m position from the lower edge of the upper embankment of sloping alluvial paddy fields. Knowledge of the spatial variability of soil water properties is of primary importance for management of agricultural lands. This study was conducted to evaluate the effect of drainage in the soil on spatial variability of soil water content using the geostatistical analysis. The soil water content was collected by a TDR (Time Domain Reflectometry) sensor after the installation of subsurface drainage on regular square grid of 80 m at 20 m paddy field located at Oesan-ri, Buk-myeon, Changwon-si in alluvial slopping paddy fields ($35^{\circ}22^{\prime}$ N, $128^{\circ}35^{\prime}$). In order to obtain the most accurate field information, the sampling grid was divided 3 m by 3 m unit mesh by four drainage types. The results showed that spatial variance of soil water content by subsurface drainage was reduced, though yield of soybean showed the same trends. Value of "sill" of soil water content with semivariogram was 9.7 in Pipe Drainage, 86.2 in Open Ditch, and 66.8 in Vinyl Barrier and 15.7 in Tube Bundle.

The Effect of Polypropylene Mulching Method on Growth of Quercus glauca Thunb. Seedling and Weed Treatments (부직포 멀칭 방식에 따른 종가시나무 묘목의 생장과 제초에 미치는 영향)

  • Sung, Chang-Hyun;Yoon, Jun-Hyuck;Jin, Eon-Ju;Bae, Eun-Ji
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.5
    • /
    • pp.59-66
    • /
    • 2020
  • Recently, cultivation and management technologies have been needed to adapt due to climate change, which is causing abnormal weather conditions. One technique is to increase the utilization of evergreen broad-leaved species with high ornamental value. A total of five treatments were installed (1m×22.5m), including 60g/㎡ and 80g/㎡ using two types mulching material with an overlapping and hole-drilling mulching method and these were compared to un-mulching treatment a total of planted 92㎡ attheWol-aTestSiteForestattheForestforBiomaterialsResearchCenterinJinju-si, Gyeongsangnam-dofor 10monthsusing3-years-oldQuercusglaucaThunb. In comparison with the control site, the 60g/㎡ overlapping method was about 1.9 times higher than the root collar diameter, but there was no statistical significance between the treatments. Healthy seedlings were found to meet these conditions due to high biomass values and below and T/R ratios of 3.0 or lower and H/D ratios of 7.0 or lower. Comparing the values of LWR, SWR, and RWR, which can be evaluated for seedling due to the mulching treatments, as compared to the control, the growth of the ground areas including leaves and stems was enhanced, but the growth of the underground areas containing roots tended to have high control values. Based on this, the SQI value, which can be evaluated for the comprehensive quality of seedlings, was found to be significantly different between the control site and the mulching treatment sites, confirming that the growth and growth improvement effects were achieved with mulching treatments. The chlorophyll content analysis showed that there was a significant difference from the control site, and it was judged that weed generation in the control acted as an environmental stress, causing a decrease in chlorophyll content. It was found that the overlapping 80g/㎡ of polypropylene mulching material generated about 4 times fewer weeds than the control, and the manpower required for the mulching test field and weeding were equal at 3.3 people/100㎡/1 day. Mulching treatments have demonstrated a significant difference in the promotion of growth and quality of the seedlings and are judged as an alternative that can reduce the economic burden incurred by the purchase of the supplies and the manpower required to weed forestry plantations.