Browse > Article
http://dx.doi.org/10.5656/KSAE.2022.02.1.065

Entomopathogenic Fungi-mediated Pest Management and R&D Strategy  

Lee, Se Jin (Department of Agricultural Life Science, Sunchon National University)
Shin, Tae Young (Department of Agricultural Biology, Jeonbuk National University)
Kim, Jong-Cheol (Department of Agricultural Biology, Jeonbuk National University)
Kim, Jae Su (Department of Agricultural Biology, Jeonbuk National University)
Publication Information
Korean journal of applied entomology / v.61, no.1, 2022 , pp. 197-210 More about this Journal
Abstract
Entomopathogenic fungi can be used to control a variety of sucking and chewing insects, with little effect on beneficial insects and natural enemies. Approximately 170 entomopathogenic fungal insecticides have been registered and used worldwide, with the recent focus being on the mode of action and mechanism of insect-fungal interactions. During the initial period of research and development, the industrialization of entomopathogenic fungi focused on the selection of strains with high virulence. However, improvement in productivity, including securing resistance to environmental stressors, is a major issue that needs to be solved. Although conidia are the primary application propagules, efforts are being made to overcome the limitations of blastospores to improve the economic feasibility of the production procedure. Fungal transformation is also being conducted to enhance insecticidal activity, and molecular biology is being used to investigate functions of various genes. In the fungi-based pest management market, global companies are setting up cooperative platforms with specialized biological companies in the form of M&As or partnerships with the aim of implementing a tank-mix strategy by combining chemical pesticides and entomopathogenic fungi. In this regard, understanding insect ecology in the field helps in providing more effective fungal applications in pest management, which can be used complementary to chemicals. In the future, when fungal applications are combined with digital farming technology, above-ground applications to control leaf-dwelling pests will be more effective. Therefore, for practical industrialization, it is necessary to secure clear research data on intellectual property rights.
Keywords
Entomopathogenic fungi; Pest management; Endophyte; Ecological application; Digital farm;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Davidson, E.W., 2012. History of insect pathology. In: Vega, F.E., Kaya, H.K. (Eds.), Insect pathology, Elsevier, London, pp. 13-28.
2 de Bary, A., 1866. Morphologie und Physiologie der Pilze, Flechten und Myxomyceten, Wilhelm Engelmann, Leipzig.
3 de Faria, M.R., Wraight, S.P., 2007. Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol. control. 43, 237-256.   DOI
4 Dietsch, R., Jakobs-Schonwandt, D., Grunberger, A., Patel, A., 2021. Desiccation-tolerant fungal blastospores: from production to application. Curr. Res. Biotechnol. 3, 323-339.   DOI
5 Shin, T.Y., Lee, W.W., Ko, S.H., Choi, J.B., Bae, S.M., Choi, J.Y., Lee, K.S., Je, Y.H., Jin, B.R., Woo, S.D., 2013. Distribution and characterisation of entomopathogenic fungi from Korean soils. Biocontrol Sci. Technol. 23, 288-304.   DOI
6 Srinivasan, R., Sevgan, S., Ekesi, S., Tamo, M., 2019. Biopesticide based sustainable pest management for safer production of vegetable legumes and brassicas in Asia and Africa. Pest Manag. Sci. 75, 2446-2454.   DOI
7 Nishi, O., Sushida, H., Higashi, Y., Iida, Y., 2021. Epiphytic and endophytic colonisation of tomato plants by the entomopathogenic fungus Beauveria bassiana strain GHA. Mycology 12, 39-47.   DOI
8 Vega, F.E., Posada, F., Catherine Aime, M., Pava-Ripoll, M., Infante, F., Rehner, S.A., 2008. Entomopathogenic fungal endophytes. Biol. Control. 46, 72-82.   DOI
9 Song, M.H., Yu, J.S., Kim, S., Lee, S.J., Kim, J.C., Nai, Y.S., Shin, T.Y., Kim, J.S., 2019. Downstream processing of Beauveria bassiana and Metarhizium anisopliae-based fungal biopesticides against Riptortus pedestris: solid culture and delivery of conidia. Biocontrol Sci. Technol. 29, 514-532.   DOI
10 Beys da Silva, W.O., Santi, L., Correa, A.P., Silva, L.A., Bresciani, F. R., Schrank, A., Vainstein, M.H., 2010. The entomopathogen Metarhizium anisopliae can modulate the secretion of lipolytic enzymes in response to different substrates including components of arthropod cuticle. Fun. Biol. 114, 911-916.   DOI
11 Pereira, H., Willeput, R., Detrain, C., 2021. A fungus infected environment does not alter the behaviour of foraging ants. Sci. Rep. 11, 1-13.   DOI
12 Imoulan, A., Wu, H. J., Lu, W. L., Li, Y., Li, B.B., Yang, R.H., Wang, X.L., Kirk, P.M., Yao, Y.J., 2016. Beauveria medogensis sp. nov., a new fungus of the entomopathogenic genus from China. J. Invertebr. Pathol. 139, 74-81.   DOI
13 Ding, J.L., Peng, Y.J., Chu, X.L., Feng, M.G., Ying, S.H., 2018. Autophagy-related gene BbATG11 is indispensable for pexophagy and mitophagy, and contributes to stress response, conidiation and virulence in the insect mycopathogen Beauveria bassiana. Environ. Microbiol. 20, 3309-3324.   DOI
14 Engel, M.S., Grimaldi, D.A., 2004. New light shed on the oldest insect. Nature 427, 627-630.   DOI
15 Arthurs, S., Dara, S.K., 2019. Microbial biopesticides for invertebrate pests and their markets in the United States. J. Invertebr. Pathol. 165, 13-21.   DOI
16 Molnar, I., Gibson, D.M., Krasnoff, S.B., 2010. Secondary metabolites from entomopathogenic Hypocrealean fungi. Nat. Prod. Rep. 27, 1241-1275.   DOI
17 St Leger, R., Screen, S., 2001. Prospects for strain improvement of fungal pathogens of insects and weeds. In: Butt, T., Jackson, C., Magan, N. (Eds.), Fungi as biocontrol agents: progress, problems and potential. CABI, Walingford, pp. 219-237.
18 Sung, G.H., Poinar Jr, G.O., Spatafora, J.W., 2008. The oldest fossil evidence of animal parasitism by fungi supports a Cretaceous diversification of fungal-arthropod symbioses. Mol. Phylogenet. Evol. 49, 495-502.   DOI
19 Valero-Jimenez, C.A., Wiegers, H., Zwaan, B.J., Koenraadt, C.J., van Kan, J.A., 2016. Genes involved in virulence of the entomopathogenic fungus Beauveria bassiana. J. Invertebr. Pathol. 133, 4149.
20 Holder, D.J., Kirkland, B.H., Lewis, M.W., Keyhani, N.O., 2007. Surface characteristics of the entomopathogenic fungus Beauveria (Cordyceps) bassiana. Microbiology 153, 3448-3457.   DOI
21 Shin, T.Y., Bae, S.M., Kim, D.J., Yun, H.G., Woo, S.D., 2017. Evaluation of virulence, tolerance to environmental factors and antimicrobial activities of entomopathogenic fungi against two-spotted spider mite, Tetranychus urticae. Mycoscience 58, 204-212.   DOI
22 Gasmi, L., Baek, S., Kim, J.C., Kim, S., Lee, M.R., Park, S.E., Shin, T.Y., Lee, S.J., Parker, B.L., Kim, J.S., 2021. Gene diversity explains variation in biological features of insect killing fungus, Beauveria bassiana. Sci. Report 11, 91.   DOI
23 Kim, J.S., Je, Y.H., Skinner, M., Parker, B.L., 2013. An oil-based formulation of Isaria fumosorosea blastospores for management of greenhousewhitefly Trialeurodes vaporariorum (Homoptera: Aleyrodidae). Pest Manag. Sci. 69, 576-581.   DOI
24 Kim, J.S., Kassa, A., Skinner, M., Hata, T., Parker, B.L., 2011. Production of thermotolerant entomopathogenic fungal conidia on millet grain. J. Ind. Microbiol. Biotechnol. 38, 697-704.   DOI
25 Wang, C., St Leger, R.J., 2007. The MAD1 adhesin of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects, and the MAD2 adhesin enables attachment to plants. Eukaryot. Cell 6, 808-816.   DOI
26 Wei, G., Lai, Y., Wang, G., Chen, H., Li, F., Wang, S., 2017. Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality. Proc. Natl. Acad. Sci. 114, 5994-5999.   DOI
27 Yang, Y.T., Lee, S.J., Nai, Y.S., Kim, S., Kim, J.S., 2016. Up-regulation of carbon metabolism-related glyoxylate cycle and toxin production in Beauveria bassiana JEF-007 during infection of bean bug, Riptortus pedestris (Hemiptera: Alydidae). Fun. Biol. 120, 1236-1248.   DOI
28 Shah, P., Pell, J., 2003. Entomopathogenic fungi as biological control agents. Appl. Microbiol. Biotechnol. 61, 413-423.   DOI
29 Wang, C., Wang, S., 2017. Insect pathogenic fungi: genomics, molecular interactions, and genetic improvements. Annu. Rev. Entomol. 62, 73-90.   DOI
30 Sevim, A., Donzelli, B.G., Wu, D., Demirbag, Z., Gibson, D.M., Turgeon, B.G., 2012. Hydrophobin genes of the entomopathogenic fungus, Metarhizium brunneum, are differentially expressed and corresponding mutants are decreased in virulence. Curr. Genet. 58, 79-92.   DOI
31 Stork, N.E., 2018. How many species of insects and other terrestrial arthropods are there on Earth?. Annu. Rev. Entomol. 63, 31-45.   DOI
32 Resquin-Romero, G., Garrido-Jurado, I., Delso, C., Rios-Moreno, A., Quesada-Moraga, E., 2016. Transient endophytic colonizations of plants improve the outcome of foliar applications of mycoinsecticides against chewing insects. J. Invertebr. Pathol. 136, 23-31.   DOI
33 Kim, J.C., Baek, S., Park, S.E., Kim, S., Lee, M.R., Jo, M., Im, J.S., Ha, P., Kim, J.S., Shin, T.Y., 2020a. Colonization of Metarhizium anisopliae on the surface of pine tree logs: A promising biocontrol strategy for the Japanese pine sawyer, Monochamus alternatus. Fungal biol. 124, 125-134.   DOI
34 Jaronski, S.T., Jackson, M.A., 2012. Mass production of entomopathogenic Hypocreales. In: Lacey, L.A. (Ed.) Manual of techniques in invertebrate pathology, Academic Press, San Diego, pp. 257-286.
35 Jitendra, M., Kiran, D., Ambika, K., Priya, S., Neha, K., Sakshi, D., 2012. Biomass production of entomopathogenic fungi using various agro products in Kota region, India. Int. J. Biol. Sci. 1, 12-16.
36 Kim, J.C., Lee, M.R., Kim, S., Lee, S.J., Park, S.E., Baek, S., Gasmi, L., Shin, T.Y., Kim, J.S., 2019. Long-term storage stability of Beauveria bassiana ERL836 granules as fungal biopesticide. J. Asia Pac. Entomol. 22, 537-542.   DOI
37 Fernandes, E.K., Rangel, D.E., Braga, G.U., Roberts, D.W., 2015. Tolerance of entomopathogenic fungi to ultraviolet radiation: a review on screening of strains and their formulation. Curr. Genet. 61, 427-440.   DOI
38 Hajek, A.E., 1997. Ecology of terrestrial fungal entomopathogens. In: Jones J.G. (Ed.) Advances in microbial ecology, Springer, Boston, pp. 193-249.
39 Vega, F.E., Goettel, M.S., Blackwell, M., Chandler, D., Jackson, M.A., Keller, S., Koike, M., Maniania, N.K., Monzon, A., Ownley, B.H., Pell, J.K., Rangel, D.E.N., Roy, H.E., 2009. Fungal entomopathogens: new insights on their ecology. Fungal Ecol. 2, 149-159.   DOI
40 Holliday, J., Cleaver, M.P., 2008. Medicinal value of the caterpillar fungi species of the genus Cordyceps (Fr.) Link (Ascomycetes). a review. Int. J. Med. Mushrooms 10, 219-234.   DOI
41 Lee, M.R., Kim, J.C., Park, S.E., Lee, S.J., Kim, W.J., Lee, D.H., Kim, J.S., 2021. Interactive gene expression between Metarhizium anisopliae JEF-290 and longhorned tick Haemaphysalis longicornis at early stage of infection. Front. Physiol. 12, 643389.   DOI
42 Rana, S., Beer, A., Birkett, R., Pegg, J.R., 2019. Biologicals 2019 - An analysis of corporate, product and regulatory news in 2018/2019. Agrow Agiribusiness Intelligence. https://docplayer.net/136726222-Agribusiness-intelligence-biologicals-an-analysis-of-corporate-product-and-regulatory-developments-in-2018-2019.html (accessed on January, 2021).
43 Kim, J.S., Lee, S.J., Skinner, M., Parker, B.L., 2014. A novel approach: Beauveria bassiana granules applied to nursery soil for management of rice water weevils in paddy fields. Pest Manag. Sci. 70, 1186-1191.   DOI
44 Lee, S.J., Lee, M.R., Kim, S., Kim, J.C., Park, S.E., Li, D., Shin, T.Y., Nai, Y.S., Kim. J.S., 2018. Genomic analysis of the insect-killing fungus Beauveria bassiana JEF-007 as a biopesticide. Sci. Report. 8, 12388.   DOI
45 Wang, C., St. Leger, R.J., 2005. Developmental and transcriptional responses to host and nonhost cuticles by the specific locust pathogen Metarhizium anisopliae var. acridum. Eukaryot. Cell 4, 937-947.   DOI
46 Xu, C., Zhang, X., Qian, Y., Chen, X., Liu, R., Zeng, G., Zhao, H., Fang, W., 2014. A high-throughput gene disruption methodology for the entomopathogenic fungus Metarhizium robertsii. PLoS ONE 9, e107657.   DOI
47 Kim, S., Kim, J.C., Lee, S.J., Lee, M.R., Park, S.E., Li, D., Baek, S., Shin, T.Y., Kim, J.S., 2020b. Beauveria bassiana ERL836 and JEF-007 with similar virulence show different gene expression when interacting with cuticles of western flower thrips, Frankniella occidentalis. BMC Genomics 21, 836.   DOI
48 Ko, S.H., Shin, T.Y., Lee, J.Y., Choi, C.J., Woo, S.D., 2021. Screening and evaluation of acaropathogenic fungi against the bulb mite Rhizoglyphus robini. J. Asia Pac. Entomol. 24, 991-996.   DOI
49 Lacey, L.A., Frutos, R., Kaya, H., Vail, P., 2001. Insect pathogens as biological control agents: do they have a future? Biol. control 21, 230-248.   DOI
50 Lacey, L.A., Grzywacz, D., Shapiro-Ilan, D.I., Frutos, R., Brown-bridge, M., Goettel, M.S., 2015. Insect pathogens as biological control agents: back to the future. J. Invertebr. Pathol. 132, 1-41.   DOI
51 Dara, S.K., 2015. Root aphids and their management in organic celery. CAPCA Advi. 18, 65-70.
52 Alkhaibari, A.M., Carolino, A.T., Yavasoglu, S.I., Maffeis, T., Mattoso, T.C., Bull, J.C., Samuels, R.I., Butt, T.M., 2016. Metarhizium brunneum blastospore pathogenesis in Aedes aegypti larvae: attack on several fronts accelerates mortality. PLoS Pathog. 12, e1005715.   DOI
53 Chen, J., Lai, Y., Wang, L., Zhai, S., Zou, G., Zhou, Z., Cui, C., Wang, S., 2017. CRISPR/Cas9-mediated efficient genome editing via blastospore-based transformation in entomopathogenic fungus Beauveria bassiana. Sci. Rep. 7, 1-10.   DOI
54 Conlon, B.H., Mitchell, J., De Beer, Z.W., Caroe, C., Gilbert, M.T.P., Eilenberg, J., Poulsen, M., Henrik, H., 2017. Draft genome of the fungus-growing termite pathogenic fungus Ophiocordyceps bispora (Ophiocordycipitaceae, Hypocreales, Ascomycota). Data Brief. 11, 537-542.   DOI
55 Dara, S.K., 2016. IPM solutions for insect pests in California strawberries: efficacy of botanical, chemical, mechanical, and microbial options. CAPCA Advi. 19, 40-46.
56 Lohse, R., Jakobs-Schonwandt, D., Vidal, S., Patel, A.V., 2015. Evaluation of new fermentation and formulation strategies for a high endophytic establishment of Beauveria bassiana in oilseed rape plants. Biol. control, 88, 26-36.   DOI
57 Lee, J.Y., Woo, R.M., Choi, C.J., Shin, T.Y., Gwak, W.S., Woo, S.D., 2019. Beauveria bassiana for the simultaneous control of Aedes albopictus and Culex pipiens mosquito adults shows high conidia persistence and productivity. AMB Express 9, 1-9.   DOI
58 Lee, S.J., Kim, S., Kim, J.C., Lee, M.R., Hossain, M.S., Shin, T.S., Kim, T.H., Kim, J.S., 2017. Entomopathogenic Beauveria bassiana granules to control soil-dwelling stage of western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). Biocontrol 62, 639-648.   DOI
59 Lee, W.W., Shin, T.Y., Bae, S.M., Woo, S.D., 2015. Screening and evaluation of entomopathogenic fungi against the green peach aphid, Myzus persicae, using multiple tools. J. Asia Pac. Entomol. 18, 607-615.   DOI
60 Li, D., Park, S.E., Lee, M.R., Kim, J.C., Lee, S.J., Kim, J.S., 2021. Soil application of Beauveria bassiana JEF-350 granules to control melon thrips, Thrips palmi Karny (Thysanoptera: Thripidae). J. Asia-Pacific Entomol. 24, 636-644.   DOI
61 Lovett, B., St. Leger, R.J., 2017. The insect pathogens. Microbiol. Spectr. 5, 5-2.
62 Lovett, B., St. Leger, R.J., 2018. Genetically engineering better fungal biopesticides. Pest Manag. Sci. 74, 781-789.   DOI
63 Ruiu, L., 2018. Microbial biopesticides in agroecosystems. Agronomy 8, 235.   DOI
64 Santos, M.P., Dias, L.P., Ferreira, P.C., Pasin, L.A., Rangel, D.E., 2011. Cold activity and tolerance of the entomopathogenic fungus Tolypocladium spp. to UV-B irradiation and heat. J. Invertebr. Pathol. 108, 209-213.   DOI
65 Yu, J.S., Lee, S.J., Shin, T.Y., Kim, W.J., Kim, J.S., 2020. Enhanced thermotolerance of entomopathogenic Beauveria bassiana and Metarhizium anisopliae JEF-isolates by substrate modification. Int. J. Indus. Entomol. 41, 28-35.   DOI
66 Zimmermann, G., 1993. The entomopathogenic fungus Metarhizium anisopliae and its potential as a biocontrol agent. Pestic. Sci. 37, 375-379.   DOI
67 Shapiro-Ilan, D.I., Bruck, D.J., Lacey, L.A., 2012. Principles of epizootiology and microbial control. In: Vega, F., Kaya, H.K. (Eds.), Insect pathology. Elsevier, San Diego, pp. 29-72.
68 Lee, M.R., Li, D., Lee, S.J., Kim, J.C., Kim, S., Park, S.E., Baek, S., Shin, T.Y., Lee, D.H., Kim, J.S., 2019. Use of Metarhizum aniopliae sl to control soil-dwelling longhorned tick, Haemaphysalis longicornis. J. Invertebr. Pathol. 166, 107230.   DOI
69 Park, S.E., Kim, J.C., Lee, S.J., Lee, M.R., Kim, S., Li, D., Baek, S., Han, J.H., Kim, J.J., Koo, K.B., 2018. Solid cultures of thrips-pathogenic fungi Isaria javanica strains for enhanced conidial productivity and thermotolerance. J. Asia Pac. Entomol. 21, 1102-1109.   DOI
70 Shin, T.Y., Lee, M.R., Park, S.E., Lee, S.J., Kim, W.J., Kim, J.S., 2020. Pathogenesis-related genes of entomopathogenic fungi. Arch. Insect Biochem. Physiol. 105, e21747.   DOI
71 Misof, B., Liu, S., Meusemann, K., Peters, R.S., Donath, A., Mayer, C., Frandsen, P.B., Ware, J., Flouri, T., Beutel, R.G., 2014. Phylogenomics resolves the timing and pattern of insect evolution. Science 346, 763-767.   DOI
72 Rangel, D.E., Braga, G.U., Fernandes, E.K., Keyser, C.A., Hallsworth, J.E., Roberts, D.W., 2015. Stress tolerance and virulence of insect-pathogenic fungi are determined by environmental conditions during conidial formation. Curr. Genet. 61, 383-404.   DOI
73 Avery, P.B., Pick, D.A., Aristizabal, L.F., Kerrigan, J., Powell, C.A., Rogers, M.E., Arthurs, S.P., 2013. Compatibility of Isaria fumosorosea (Hypocreales: Cordycipitaceae) blastospores with agricultural chemicals used for management of the Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae). Insects 4, 694-711.   DOI
74 Butt, T.M., Coates, C.J., Dubovskiy, I.M., Ratcliffe, N.A., 2016. Entomopathogenic fungi: new insights into host-pathogen interactions. Adv. Genet. 94, 307-364.   DOI
75 Chandler, D., 2017. Basic and applied research on entomopathogenic fungi. In: Lacey L.A. (Ed.), Microbial control of insect and mite pests. Academic Press, Amsterdam, pp. 69-89.
76 Market Research, 2020. Global Beauveria bassiana insecticide market growth (Status and Outlook) 2020-2025, LP Information, Inc., USA. https://www.marketresearch.com/LP-Information-Inc-v4134/Global-Beauveria-Bassiana-Insecticide-Growth-13515169/ (accessed on 22 December, 2020).
77 Zhao, X., Yang, X., Lu, Z., Wang, H., He, Z., Zhou, G., Zhang, Y., 2019. MADS-box transcription factor Mcm1 controls cell cycle, fungal development, cell integrity and virulence in the filamentous insect pathogenic fungus Beauveria bassiana. Environ. Microbiol. 21, 3392-3416.   DOI