• Title/Summary/Keyword: ground characterization

Search Result 183, Processing Time 0.034 seconds

Purification and Characterization of Angiotensin I-Converting Enzyme Inhibitor from Porphyra yezoensis (김으로부터 분리한 Angiotensin-I Converting Enzyme 저해제의 정제 및 특성)

  • 최수진;전우진;유광원;신동훈;홍범식;조홍연;양한철
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.4
    • /
    • pp.719-725
    • /
    • 2000
  • This study focused on the purification and characterization of ACE inhibitor from Porphyra yezoensis. The dried Porphyra yezoensis was ground and hydrolyzed with 2.5 N HCl, followed by neutralization and centrifugation. Then, the subsequential purification of ACE inhibitor was carried out by Amberlite XAD 8, DEAE-Toyopearl 650C, Sephadex LH-20 column chromatography and reverse phase HPLC with C18 column. The purified ACE inhibitor was peptide which consisted of glycine (24.5%), arginine (56.8%) and proline (18.8%). Also, it showed the competitive inhibition pattern to ACE. The apparent molecular mass of purified peptide was 580 dalton, and an IC50 value of ACE inhibitor was 10.6 $\mu\textrm{g}$.

  • PDF

The State-of-the-Art of Geophysical Exploration Technology applied to Site Characterization in Civil Engineering and Construction in Japan (일본에서의 토목${\cdot}$건설 지반조사를 위한 물리탐사 활용 현황)

  • Park, Sam-Gyu;Kim, Hee-Joon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 1999.08a
    • /
    • pp.1-20
    • /
    • 1999
  • In Japan, geophysical exploration methods have been widely applied to civil engineering and construction fields for a long time. In particular, seismic refraction has long played a significant role in geotechnical site investigations for tunnels, dams and landslides. However, our growing interest on the social and natural environment makes the methods available and its application fields diversify. Digital technologies such as personal computer have revolutionized our ability to acquire large volumes of data rapidly, and to produce more reliable results for subsurface image. Also, color graphics easily visualizes survey results In a more understandable manner, These days geophysical methods are essential to assessing grouting effects, predicting the front of tunnel cutting face, monitoring the movement, pollution and purification process of groundwater. Now three-dimensional exploration techniques have developed for the site characterization in civil engineering and construction needs.

  • PDF

Analysis Simultaneously Switching Density Using Ring Oscillator (Ring Oscillator를 이용한 신호의 동시 스위칭 밀도 분석)

  • Jeong, Sang-Nam;Baeg, Sang-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.9
    • /
    • pp.79-84
    • /
    • 2008
  • Switching speeds increase in both frequency and the transition rate of edges. Inadequate forecast for simultaneous switching signals may cause designing the power planes without sufficient current capability. The delay of critical signals in a chip can be therefore inadvertently increased and the situation makes it hard to debug issues. It is important to find the degree of increased switching during the debugging or chip characterization phases. This paper proposes the interpolation method to predict the switching density in a design. The interpolation was achieved by utilizing the dependencies between switching frequency and the delay appeared in a ring oscillator. The ring oscillator was primarily used to accumulate the effects of the ground bounce by higher switching. The result of interpolation was demonstrated using DongBu Hitec 0.18um CMOS technology.

Changes in macroalgal assemblage with sea urchin density on the east coast of South Korea

  • Jeon, Byung Hee;Yang, Kwon Mo;Kim, Jeong Ha
    • ALGAE
    • /
    • v.30 no.2
    • /
    • pp.139-146
    • /
    • 2015
  • Urchin barrens have been a major issue of rocky coastal ecosystems in temperate regions. In South Korea, the east coast and Jeju Island have especially been a focus because the area of barren ground increases in spite of continual efforts to install artificial reefs. This study approached the urchin barrens issue in South Korea, by focusing on a correlational analysis of urchin and macroalgal abundance. Urchin density and algal species coverage were obtained using a quadrat image analysis. Subtidal sites were then classified into three groups according to the average densities of urchins to evaluate the characterization of the macroalgal community: no urchin (NU) zone; transition (TR) zone, $4inds.\;m^{-2};$ and urchin (UR) zone, ${\geq}8inds.\;m^{-2}$. The average urchin density in the study site was $4.7inds.\;m^{-2}$ and 57 macroalgal species were found in the study site. From the NU zone to UR zone, total species number, species diversity index and evenness gradually decreased, whereas the dominance index increased. The algae species with negative correlations were Grateloupia divaricata, Polysiphonia morrowii, Chondracanthus intermedius, Delesseria violacea, Desmarestia viridis; and those with positive correlations were the crustose corallines, Sargassum horneri. Other species were not significantly correlated with urchin density. The significant correlations indicate that the abundance of some macroalgal species is proportionally regulated by sea urchin density. This study also shows how macroalgal vegetation changes in response to an urchin's density gradient in a natural condition; and there is a TR zone that existed with respect to an intermediate level of algal abundance.

Characterization of Proteolytic Streptococcus sp. Isolated from Market Foods (시판식품에서 분리된 단백분해성이 강한 Streptococcus sp.의 특성)

  • CHANG Dong-Suck;LEE Jong S.
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.16 no.3
    • /
    • pp.225-230
    • /
    • 1983
  • The proteolytic bacteria were isolated from the market foods such as ground beef, cooked shrimp meat, perch fillet, oyster meat, beef with textured vegetable protein and fish digest distributed at supermarket in Corvallis, Oregon, U.S.A. Two hundred and twenty-eight strains($30.8\%$) have proteolytic activity from 740 strains isolated from the examined samples and the strongest proteolytic strain among them was identified as a Streptococcus sp. Its maximum growth was showed at about 6 hours culture at $37^{\circ}C$ with shaking incubator in the medium added $0.15\%$ potassium phosphate monobasic and $0.4\%$ potassium phosphate dibasic, while the strongest activity of its extracellular protease was observed after 7 hours culture. The exoenzyme produced by the Streptococcus sp. was observed as a metal chelator sensitive protease, which are strongly inhibited by EDTA and o-phenanthroline but not affected by phenylmethylsulfonylfluoride and p-hydroxymercuribenzoate.

  • PDF

The Effect of Liquid Medium on Silicon Grinding and Oxidation during Wet Grinding Process (습식분쇄공정에서 액상매체가 실리콘 분쇄 및 산화특성에 미치는 영향)

  • Kwon, Woo Teck;Kim, Soo Ryong;Kim, Young Hee;Lee, Yoon Joo;Shin, Dong Geun;Won, Ji Yeon;Oh, Sea Cheon
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.2
    • /
    • pp.121-126
    • /
    • 2014
  • The influence of a liquid medium duringa wet-milling process in the grinding and oxidation of silicon powder was investigated. Distilled water, dehydrated ethanol and diethylene glycol were used as the liquid media. The applied grinding times were 0.5, 3, and 12 h. Ground silicon powder samples were characterized by means of aparticle size analysis, scanning electron microscopy(SEM), x-ray powder diffraction (XRD), FT-IR spectroscopy and by a chemical composition analysis. From the results of the characterization process, we found that diethylene glycol is the most efficient liquid medium when silicon powder is ground using a wet-milling process. The FT-IR results show that the Si-O band intensity in an unground silicon powder is quite strongbecause oxygen becomes incorporated with silicon to form $SiO_2$ in air. By applying deionized water as a liquid medium for the grinding of silicon, the $SiO_2$ content increased from 4.12% to 31.7%. However, in the cases of dehydrated ethanol and diethylene glycol, it was found that the $SiO_2$ contents after grinding only changed insignificantly, from 4.12% to 5.91% and 5.28%, respectively.

Characterization of Thermo-Plastic Vulcanized (TPV) Composite Prepared by the Waste Tire and Plastic Powder (폐타이어 분말과 재생PP로 제조한 열가소성 고무 플라스틱(TPV)의 물성평가)

  • An, Ju-Young;Park, Jong-Moon;Bang, DaeSuk;Kim, Bong-Suk;Oh, Myung-Hoon
    • Resources Recycling
    • /
    • v.23 no.4
    • /
    • pp.30-36
    • /
    • 2014
  • 300,000 tons of waste tires are annually being produced with development of the automotive industry in Korea. Landfill and incineration treatment system are causing the economic problem through secondary environmental pollution and waste. Therefore, as one of the ways to take advantage of this, Thermo-Plastic Vulcanized (TPV) composite was prepared by the ground waste tire and plastic powders. The waste tire powder was gained by mechanical fracturing through crushers. The waste tire powder was ground by a shear crushing method and a 2-stage disk mill method instead of cutting crushing one. The waste tire powder of 50 mesh was mixed with Polypropylene(PP) in various proportions. TPVs were prepared by an extrusion, and tensile and impact tests were performed. In addition, the same experiments were repeated in 40, 80, 140 mesh conditions in order to observe size effect of waste tire powders.

A Study on Numerical Analysis for GPR Signal Characterization of Tunnel Lining Cavities (터널 라이닝 공동에 대한 GPR 신호 특성 분석을 위한 수치해석 연구)

  • Go, Gyu-Hyun;Lee, Sung Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.10
    • /
    • pp.65-76
    • /
    • 2021
  • There is a possibility of cavities occurring inside and behind the lining of an aged tunnel structure. In most cases, it is not easy to check the cavity because it exists in a place where visual inspection is impossible. Recently, attempts have been made to evaluate the condition of the tunnel lining and the backfill materials using non-destructive tests such as Ground Penetrating Radar, and various related model tests and numerical analysis studies have been conducted. In this study, the GPR signal characteristics for tunnel lining model testing were analyzed using gprMax software, which was compared with model test results. The numerical model applied to the model test reasonably simulated the electromagnetic wave signal according to the change of the material such as tunnel lining and internal cavity. Using the verified GPR model, B-scan data for the development of the GPR signal analysis technique were obtained, which can evaluate the thickness of the tunnel lining, the presence of the cavity, the effect of the waterproof membrane, and the frequency band.

Static and dynamic characterization of a flexible scaled joined-wing flight test demonstrator

  • Carregado, Jose;Warwick, Stephen;Richards, Jenner;Engelsen, Frode;Suleman, Afzal
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.2
    • /
    • pp.117-144
    • /
    • 2019
  • High Altitude and Long Endurance (HALE) aircraft are capable of providing intelligence, surveillance and reconnaissance (ISR) capabilities over vast geographic areas when equipped with advanced sensor packages. As their use becomes more widespread, the demand for additional range, endurance and payload capability will increase and designers are exploring non-conventional configurations to meet the increasing demands. One such configuration is the joined-wing concept. A joined-wing aircraft is one that typically connects a front and aft wings in a diamond shaped planform. One such example is the Boeing SensorCraft configuration. While the joined-wing configuration offers potential benefits regarding aerodynamic efficiency, structural weight, and sensing capabilities, structural design requires careful consideration of elastic buckling resulting from the aft wing supporting, in compression, part of the forward wing structural loading. It has been shown already that this is a nonlinear phenomenon, involving geometric nonlinearities and follower forces that tend to flatten the entire configuration, leading to structural overload due to the loss of the aft wing's ability to support the forward wing load. Severe gusts are likely to be the critical design condition, with flight control system interaction in the form of Gust Load Alleviation (GLA) playing a key role in minimizing the structural loads. The University of Victoria Center for Aerospace Research (UVic-CfAR) has built a 3-meter span scaled and flexible wing UAV based on the Boeing SensorCraft design. The goal is to validate the nonlinear structural behavior in flight. The main objective of this research work is to perform Ground Vibration Tests (GVT) to characterize the dynamic properties of the scaled flight vehicle. Results from the experimental tests are used to characterize the modal dynamics of the aircraft, and to validate the numerical models. The GVT results are an important step towards a safe flight test program.

Characterization of Deep Shear Wave Velocity Profiles in the Gimhae Plains Using the Microtremor Array Method (상시미동 표면파 분석에 의한 김해평야 퇴적층 심부 전단파 속도 결정)

  • Kim, Jae Hwi;Jeong, Seokho
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.8
    • /
    • pp.17-27
    • /
    • 2022
  • To characterize the dynamic properties of Gimhae Plains sediments, we calculated natural frequencies using microtremor horizontal-to-vertical spectral ratios and derived shear wave velocity profiles by inversion of Rayleigh-wave dispersion curves obtained by the high frequency-wavenumber and modified spatial autocorrelation methods. Our results suggest that in this region, strong amplification of ground motion is expected in the vibration frequency (f ≥ 1 Hz). Additionally, obtained velocity profiles show that shear wave velocities are ~200 and 400 m/s for the shallow marine and old fluvial sediments, respectively. Bedrock is possibly encountered at depths of 60-100 m at most sites. We developed a simplified shear wave velocity model of shallow sediments based on the obtained profiles. Our results suggest that a large area in the Gimhae Plains could be categorized as an S6 site based on the Korean seismic design code (KDS 17 10 00).