Browse > Article
http://dx.doi.org/10.4490/algae.2015.30.2.139

Changes in macroalgal assemblage with sea urchin density on the east coast of South Korea  

Jeon, Byung Hee (Department of Biological Sciences, Sungkyunkwan University)
Yang, Kwon Mo (Department of Biological Sciences, Sungkyunkwan University)
Kim, Jeong Ha (Department of Biological Sciences, Sungkyunkwan University)
Publication Information
ALGAE / v.30, no.2, 2015 , pp. 139-146 More about this Journal
Abstract
Urchin barrens have been a major issue of rocky coastal ecosystems in temperate regions. In South Korea, the east coast and Jeju Island have especially been a focus because the area of barren ground increases in spite of continual efforts to install artificial reefs. This study approached the urchin barrens issue in South Korea, by focusing on a correlational analysis of urchin and macroalgal abundance. Urchin density and algal species coverage were obtained using a quadrat image analysis. Subtidal sites were then classified into three groups according to the average densities of urchins to evaluate the characterization of the macroalgal community: no urchin (NU) zone; transition (TR) zone, $4inds.\;m^{-2};$ and urchin (UR) zone, ${\geq}8inds.\;m^{-2}$. The average urchin density in the study site was $4.7inds.\;m^{-2}$ and 57 macroalgal species were found in the study site. From the NU zone to UR zone, total species number, species diversity index and evenness gradually decreased, whereas the dominance index increased. The algae species with negative correlations were Grateloupia divaricata, Polysiphonia morrowii, Chondracanthus intermedius, Delesseria violacea, Desmarestia viridis; and those with positive correlations were the crustose corallines, Sargassum horneri. Other species were not significantly correlated with urchin density. The significant correlations indicate that the abundance of some macroalgal species is proportionally regulated by sea urchin density. This study also shows how macroalgal vegetation changes in response to an urchin's density gradient in a natural condition; and there is a TR zone that existed with respect to an intermediate level of algal abundance.
Keywords
barren ground; diversity; macroalgae; rocky; sea urchin; transition zone;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Agatsuma, Y. 2007. Ecology of Strongylocentrotus intermedius. In Lawrence, J. M. (Ed.) Edible Sea Urchins: Biology and Ecology. Elsevier Science Press, Oxford, pp. 427-457.
2 Agnetta, D., Bonaviri, C., Badalamenti, F., Scianna, C., Vizzini, S. & Gianguzza, P. 2013. Functional traits of two cooccurring sea urchins across a barren/forest patch system. J. Sea Res. 76:170-177.   DOI
3 Arai, S. & Arai, A. 1984. Effects of grazing on algal succession I. Jpn. J. Phycol. 32:43-51.
4 Choat, J. H. & Schiel, D. R. 1982. Patterns of distribution and abundance of large brown algae and invertebrate herbivores in subtidal regions of northern New Zealand. J. Exp. Mar. Biol. Ecol. 60:129-162.   DOI
5 Choi, C. G., Kwak, S. N. & Sohn, C. H. 2006. Community structure of subtidal marine algae at Uljin on the east coast of Korea. Algae 21:463-470.   DOI
6 Dean, T. A., Bodkin, J. L., Jewett, S. C., Monson, D. H. & Jung, D. 2000. Changes in sea urchins and kelp following a reduction in sea otter density as a result of the Exxon Valdez oil spill. Mar. Ecol. Prog. Ser. 199:281-291.   DOI
7 Dumont, C. P., Himmelman, J. H. & Russell, M. P. 2006. Daily movement of the sea urchin Strongylocentrotus droebachiensis in different subtidal habitats in eastern Canada. Mar. Ecol. Prog. Ser. 317:87-99.   DOI
8 Guidetti, P. & Dulcic, J. 2007. Relationships among predatory fish, sea urchins and barrens in Mediterranean rocky reefs across a latitudinal gradient. Mar. Environ. Res. 63:168-184.   DOI
9 Harrold, C. & Reed, D. C. 1985. Food availability, sea urchin grazing, and kelp forest community structure. Ecology 66:1160-1169.   DOI   ScienceOn
10 Jeon, B. H. 2013. Morphology, distribution and culture studies of crustose coralline algae (Corallinales, Rhodophyta) in the east coast of Korea. PhD dissertation, Gangneung-Wonju National University, Gangneung, Korea, 102 pp.
11 Kim, N. -G. & Jang, J. -G. 2012. Stomach contents of the sea urchins, Anthocidaris crassispina and Hemicentrotus pulcherrimus and characterization of the marine algal community along the Tongyeong coast of Korea. Korean J. Fish. Aquat. Sci. 45:686-693.   DOI
12 Kim, S. -K., Kim, Y. -D., Jeon, C. -Y., Gong, Y. -G., Kim, D. -S., Kim, J. -H., Kim, M. -L. & Han, H. -K. 2007. Algal consumption and preference of sea urchins, Strongylocentrotus nudus, S. intermedius and abalone, Haliotis discuss hannai. J. Korean Fish. Soc. 40:133-140.
13 Klumpp, D. W., Salita-Espinosa, J. T. & Fortes, M. D. 1993. Feeding ecology and tropic role of sea urchins in a tropical seagrass community. Aquat. Bot. 45:205-229.   DOI
14 Nakabayashi, N., Miura, N., Agatsuma, Y. & Taniguchi, K. 2006. Growth and gonad production of the sea urchin Stronglyocentrotus nudus in relation to marine algal communities along the Japan sea coast of Akita prefecture, northwestern Japan. Aquac. Sci. 54:365-374.
15 Lee, K. W., Shon, C. H. & Chung, S. C. 1998. Marine algal flora and grazing effect of sea urchins in the coastal waters of Cheju Island. J. Aquac. 11:401-419.
16 Mann, K. H. 1982. Kelp, sea urchins and predators: a review of strong interactions in rocky subtidal systems of eastern Canada, 1970-1980. Neth. J. Sea Res. 16:414-423.   DOI
17 Morse, B. L. & Hunt, H. L. 2013. Effect of unidirectional water currents on displacement behaviour of the green sea urchin Strongylocentrous droebachiensis. J. Mar. Biol. Assoc. U. K. 93:1923-1928.   DOI
18 Park, J. G. 2008. Marine algal communities and seaweed beds of barren ground along the eastern coast of Korea. PhD dissertation, Gangneung-Wonju National University, Gangneung, Korea, 152 pp.
19 Privitera, D., Chiantore, M., Mangialajo, L., Glavic, N., Kozul, W. & Cattaneo-Vietti, R. 2008. Inter- and intra-specific competition between Paracentrotus lividus and Arbacia lixula in resource-limited barren areas. J. Sea Res. 60:184-192.   DOI
20 Seymour, S., Paul, N. A., Dworjanyn, S. A. & de Nys, R. 2013. Feeding preference and performance in the tropical sea urchin Tripneustes gratilla. Aquaculture 400-401:6-13.   DOI
21 Shin, J. D., Ahn, J. K., Kim, Y. H., Lee, S. B., Kim, J. H. & Chung, I. K. 2008a. Community structure of benthic marine algae at Daejin and Jukbyeon on the mid-east coast of Korea. Algae 23:231-240.   DOI
22 Vadas, R. L., Elner, R. W., Garwood, P. E. & Babb, I. G. 1986. Experimental evaluation of aggregation behavior in the sea urchin Strongylocentrotus droebachiensis. Mar. Biol. 90:433-448.   DOI
23 Shin, J. D., Ahn, J. K., Kim, Y. H., Lee, S. B., Kim, J. H. & Chung, I. K. 2008b. Temporal variations of seaweed biomass in Korean coasts: Daejin, Gangwondo. Algae 23:327-334.   DOI
24 Stewart, N. L. & Konar, B. 2012. Kelp forests versus urchin barrens: alternate stable states and their effect on sea otter prey quality in the Aleutian Islands. J. Mar. Biol. 2012:492308.
25 Vadas, R. L. 1977. Preferential feeding: an optimization strategy in sea urchins. Ecol. Monogr. 47:337-371.   DOI
26 Watanabe, J. M. & Harrold, C. 1991. Destructive grazing by sea urchin Strongylocentrotus spp. in a central Califonia kelp forest: potential roles of recruitment, depth, and predation. Mar. Ecol. Prog. Ser. 71:125-141.   DOI
27 Wright, J. T., Dworjanyn, S. A., Rogers, C. N., Steinberg, P. D., Williamson, J. E. & Poore, A. G. B. 2005. Density-dependent sea urchin grazing: differential removal of species, changes in community composition and alternative community states. Mar. Ecol. Prog. Ser. 298:143-156.   DOI
28 Yoo, J. W., Kim, H. J., Lee, H. J., Lee, C. G., Kim, C. S., Hong, J. S., Hong, J. P. & Kim, D. S. 2007. Interaction between invertebrate grazers and seaweeds in the east coast of Korea. J. Korean Soc. Oceanogr. 12:125-132.