• 제목/요약/키워드: griseus

Search Result 77, Processing Time 0.029 seconds

Cholesterol Oxidase를 생산하는 방선균분리주 HSL-613의 동정 (Identification of the Streptomyces Strain HSL-613 Producing Cholesterol Oxidase)

  • 이홍수;이인애;최용경;이희구;이근철;박용하;오태광;최인성;정태화
    • 한국미생물·생명공학회지
    • /
    • 제22권4호
    • /
    • pp.373-381
    • /
    • 1994
  • An actinomycete strain, HSL-613 was isolated -from soil and identified by International Streptomyces Project (ISP) and chemotaxonomic methods. The spore chain of the strain HSL-613 appears in a spiral shape, and its spores are spherical shape with smooth surface. The cell wall contains LL-diaminopimelic acid (DAP). Menaquinone MK-9 (H$_{6}$, H$_{8}$) and iso- and anteiso-branched fatty acids were detected from whole cell extract. Sugars identified from whole cell extract include galactose, glucose, mannose and ribose, which are distinct from general sugar patterns of Streptomyces. Average G+C content in the chromosome is 59%. 5S rRNA of HSL-613 consists of 120 nucleotides as determined by comparing with that of a type strain Streptomyces griseus subsp. KCTC 9080. Through morphological, physiological, and chemical characterization, HSL-613 was identified and named as Streptomyces sp. HSL-613.

  • PDF

Streptomyces lividans에서 secE 유전자의 클로닝과 염기서열 결정

  • 김순옥;서주원
    • 한국미생물·생명공학회지
    • /
    • 제25권3호
    • /
    • pp.253-257
    • /
    • 1997
  • The secE gene of Streptomyces lividans TK24 was cloned by the polymerase chain reaction method with synthetic oligonucleo- tide primers designed on the basis of the nucleotide sequences of Streptomyces coelicolor secE-nusG-rplK operon. The deduced amino acid sequences of the SecE were highly homologous to those of other known SecE protein, that is 36.8%, 30.4%, 80.0%, and 80.9%, similarity to E. coli, Bacillus subtilis, Streptomyces griseus, Streptomyces virginiae SecE, respectively and exactly same with Streptomyces coelicolor SecE. It means that in spite of evolutionary differences, the genes for protein translocation machinery are highly conserved in eubacteria. The gene organization of secE-nusG-rplK is also similar to that of E. coli, B. subtilis, and streptomycetes.

  • PDF

Identification of a Cryptic Type III Polyketide Synthase (1,3,6,8-Tetrahydroxynaphthalene Synthase) from Streptomyces peucetius ATCC 27952

  • Ghimire, Gopal Prasad;Oh, Tae-Jin;Liou, Kwangkyoung;Sohng, Jae Kyung
    • Molecules and Cells
    • /
    • 제26권4호
    • /
    • pp.362-367
    • /
    • 2008
  • We identified a 1,134-bp putative type III polyketide synthase from the sequence analysis of Streptomyces peucetius ATCC 27952, named Sp-RppA, which is characterized as 1,3,6,8-tetrahydroxynaphthalene synthase and shares 33% identity with SCO1206 from S. coelicolor A3(2) and 32% identity with RppA from S. griseus. The 1,3,6,8-tetrahydroxynaphthalene synthase is known to catalyze the sequential decarboxylative condensation, intramolecular cyclization, and aromatization of an oligoketide derived from five units of malonyl-CoA to give 1,3,6,8-tetrahydroxynaphthalene, which spontaneously oxidizes to form 2,5,7-trihydroxy-1,4-naphthoquinone (flaviolin). In this study, we report the in vivo expression and in vitro synthesis of flaviolin from purified gene product (Sp-RppA).

배검은별무늬병균과 배붉은별무늬병균에 대한 유기농자재들의 항균활성 (Antifungal Activity of Agro-Materials against Pear Scab (Venturia nashicola) and Pear Rust (Gymnosporangium asiaticum) Fungi)

  • 송장훈;서호진
    • 식물병연구
    • /
    • 제24권1호
    • /
    • pp.33-40
    • /
    • 2018
  • 본 연구는 무기살균제, 식물추출물, 미생물 등 우리나라에 등록된 병해관리용 유기농자재 중 19종에 대해 배검은별무늬병균과 배붉은별무늬병균을 접종하고 배 잎 조직에서의 항균활성을 확인하고자 수행하였다. 배검은별무늬병균에 대해 황, 구리 등이 함유된 유기농자재 9종 중에서 대부분은 포자발아를 완전히 억제하였고, 일부 발아한 포자의 경우에도 부착기가 전혀 형성되지 않았으나 배붉은별무늬병균에 대해서는 석회황합제, 네오보르도, 흰가리스 등에 한하여 항균활성을 보였다. 식물추출물을 함유하는 유기농자재 중 흰가루자바는 배 검은 별무늬병균의 분생포자 발아를 완전하게 억제하였으며 배 붉은별무늬병균에 대해서도 71.6% 수준으로 비교적 높은 포자발아 억제효과를 보였다. 미생물 함유 제제로써 청고탄(Streptomyces griseus)은 배검은별무늬병균에 대해 88.8%의 포자발아억제율을 보이고 부착기도 형성하지 않으며 세포간에 자재집적이 확인되지 않았다. 탑시드(Paenibacillus polymyxa)는 배검은별무늬병균과 배 붉은별무늬병균에 대해 포자발아억제율이 각각 71.0%와 90.6% 수준이며 부착기형성도 이뤄지지 않았다. 향후 직접적인 접촉으로 인하여 발생되는 보호효과뿐만 아니라 미생물 대사산물과 천연화합물이 지니고 있는 유도저항성 효과도 고려하여 포장조건에서 누적적으로 살포하면서 종합적인 항균활성을 검토할 필요가 있다.

Chitinase Inhibitor 생산 균주의 분리와 곤충탈피 억제효과 (Isolation of Chitinase Inhibitor-producing Microorganisms and Their Inhibitory Effect on Larval-Pupal Ecdysis)

  • 성수일;김근;성낙문;강현아
    • 한국잠사곤충학회지
    • /
    • 제34권2호
    • /
    • pp.1-5
    • /
    • 1992
  • 전국에서 수집한 토양시료로부터 약 200 여종의 미생물을 분리해내고 이들 균주의 배양 산물액을 대상으로 chitinase 억제능을 조사하였다. 그 결과 누에의 중장 소화관에서 추출한 chitinase crude enzyme과 시판의 정제된 chitinase에 대하여 공통으로 효소의 활성을 억제하는 2개의 균주 S-11과 S-25를 선발하는데 성공하였다. 이들 균주의 배양 산물액을 토사기의 누에에 주사한 결과 대부분의 누에가 용화탈피에 실패하였다.

  • PDF

Proteases and Protease Inhibitors Produced in Streptomycetes and Their Roles in Morphological Differentiation

  • KIM DAE WI;KANG SUNG GYUN;KIM IN SEOP;LEE BYONG KYU;RHO YONG TAIK;LEE KYE JOON
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권1호
    • /
    • pp.5-14
    • /
    • 2006
  • Streptomycetes are Gram-positive microorganisms producing secondary metabolites through unique physiological differentiation [4]. The microbes show unusual morphological differentiation to form substrate mycelia, aerial mycelia, and arthrospores on solid medium [19]. Substrate mycelium growth is sustaining with sufficient nutrients in the culture medium. The concentration of a specific individual substrate in the culture environment is the most important extracellular factor allowing vegetative mycelia growth, where extracellular hydrolytic enzymes participate in the utilization of waterinsoluble substrates. However, with starvation of nutrients in the culture medium, the vegetative mycelia differentiate to aerial mycelia and spores. It has been considered that shiftdown of essential nutrients for mycelia growth is the most important factor triggering morphological and physiological differentiation in Streptomyces spp. Since proteineous macromolecule compounds are the major cellular components, these are faced to endogenously metabolize following a severe depletion of nitrogen source in culture nutrients (Fig. 1). Various proteases were identified of which production was specifically related with the phase of mycelium growth and also morphological differentiation. The involvement of proteases and protease inhibitor is reviewed as a factor explaining the mycelium differentiation in Streptomyces spp.

Effects of Natural Selection, Mutagenesis, and Protoplast Formation and Cell Wall Regeneration on the Production of Aminoglycoside Antibiotics

  • Goo, Yang-Mo;Lim, Hyon-Joo;Lim, Seok-Ran;Kim, Kong-Hwan;Lim, Bun-Sam;Lee, Sae-Bae
    • Archives of Pharmacal Research
    • /
    • 제12권4호
    • /
    • pp.249-253
    • /
    • 1989
  • High producers or blocked mutants of aminoglycoside antibiotic-producing Streptomyces spp. were selected by application of an agar plug method and by culturing individual colonies in broth. The productivities of aminoglycoside antibiotic producing organisms were increased by selection of a high producer from colonies obtained by spreading spores of wild strain, or survived from treatment of a mutagen or from the colonies regenerated from protoplast-formation and cell-wall regenerations. Some mutagen treated colonies lost the ability to produce antibiotics (5-8%). Some A-factor negative and deostreptamine or streptidine negative mutants were obtained by N-methyl-N'-nitro-N-nitrosomethylguanidine (MNNG) treatment. Many of the survivors from the MNNG treatment lost the ability to produce antibiotics. Major colonies produced less amount of antibiotics ; only few survived colonies produced more antibiotics than the parent. Resistance of Streptomyces spp. against the antibiotics produced by itself was also markedly affected by mutagen treatment.

  • PDF

Beta-amyloid peptide degradation by aminopeptidase and its functional role in Alzheimer's disease pathogenesis

  • AhnJo, Sang-Mee
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2006년도 Spring Conference
    • /
    • pp.77-90
    • /
    • 2006
  • Beta-amyloid peptide (A$\beta$) is a major component of senile plaques and its aggregation is considered to play a critical role in pathogenesis of Alzheimer's disease (AD). Aggregation of A$\beta$ could result from both increased synthesis and decreased degradation of A$\beta$. Our laboratory is interested in understanding the mechanism of A$\beta$ degradation in brain. Recently our laboratory identified a bacterial gene (SKAP) from Streptomyces sp KK565 whose protein product has an activity to cleave A$\beta$ and thus reduce the A$\beta$-induced neurotoxicity. The sequence analysis showed that this gene was closely related to aminopeptidase. Maldi-Tof analysis showed that the recombinant SKAP protein expressed in E. coli cleaves both A$\beta$ 40 and A$\beta$ 42 at the N-terminal of A$\beta$ while an aminopeptidase from Streptomyces griseus (SGAP) cleaves at the C-terminal. We also identified a mammalian homolog of SKAP and the recombinant mammalian protein expressed in Sf-9 insect cells showed a similar proteolytic activity to SGAP, cutting A$\beta$ at the C-terminus. I well discuss the detailed mechanism of the enzyme action and its functional implication in AD.

  • PDF

순수배양 시 외생균근균의 질소원 요구성과 선호도 (Nitrogen Source-requirement and Preference of Ectomycorrhizal Fungi in Pure Culture)

  • 전성민;가강현
    • 한국균학회지
    • /
    • 제41권3호
    • /
    • pp.149-159
    • /
    • 2013
  • 국내 산림에서 수집한 외생균근균(13속 42균주)을 질소원이 서로 다른 4종류의 시험배지에 접종하고 56일간 순수 배양하여 질소원 요구성과 선호도를 조사하였다. 그 결과, 일본연지그물버섯(KFRI 1224), 비단그물버섯(KFRI 1232), 끈적쓴맛그물버섯(KFRI 1383), 젖비단그물버섯(KFRI 1997), 알버섯류(KFRI 1434) 등이 질소원 요구성이 높은 것으로 조사되었다. 검은머리그물버섯(KFRI 1362)을 비롯하여 총 시험균주의 45%는 질산염보다 암모늄 형태의 무기질소원을 더 선호하였다. 반면 큰비단그물버섯(KFRI 1125)을 비롯한 총 시험균주의 36%는 질산염 형태의 무기질소원을 더 선호하였다.

Physiological importance of trypsin-like protease during morphological differentiation of streptomycetes

  • Kim, In-Seop;Kang, Sung-Gyun;Lee, Kye-Joon
    • Journal of Microbiology
    • /
    • 제33권4호
    • /
    • pp.315-321
    • /
    • 1995
  • The relationship between morphological differentiation and production of trypsin-like protease (TLP_ in streptomycetes was studied. All the Streptomyces spp.In this study produced TLP just before the onset of aerial mycelium formation. Addition of TLP inhibitor, TLCK, to the top surface of colonies inhibited aerial mycelium formation as well as TLP inhibitor, TLCK, to the top surface of colonies inhibited aerial mycelium formation as well as TLP activity. Addition of 2% glucose to the Bennett agar medium repressed both the aerial mycelium formation and TLP production in S. abuvaviensis, S. coelicolor A3(2), S exfoliatus, S. microflavus, S. roseus, s. lavendulae, and S. rochei. However the addition of glucose did not affect S. limosus, S. felleus, S. griseus, S. phaechromogenes, and S. rimosus. The glucose repression on aerial mycelium formation and production of TLP was relieved by the addition of glucose anti-metabolite (methyl .alpha.-glucopyranoside). Therefore, it was concluded that TLP production is coordinately regulated with morphological differentiation and TLP activity is essential for morphological differentiation in streptomycetes. The proposed role of TLP is that TLP participates in the degradation of substrate mycelium protein for providing nutrient for aerial mycelial growth.

  • PDF