Browse > Article

Proteases and Protease Inhibitors Produced in Streptomycetes and Their Roles in Morphological Differentiation  

KIM DAE WI (School of Biological Sciences, Seoul National University)
KANG SUNG GYUN (Korea Ocean Research and Development Institute)
KIM IN SEOP (Department of Biology, Hannam University)
LEE BYONG KYU (Department of Research Administration, Yuhan Research Institute)
RHO YONG TAIK (Department of Genetic Engineering, Youngdong University)
LEE KYE JOON (School of Biological Sciences, Seoul National University)
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.1, 2006 , pp. 5-14 More about this Journal
Abstract
Streptomycetes are Gram-positive microorganisms producing secondary metabolites through unique physiological differentiation [4]. The microbes show unusual morphological differentiation to form substrate mycelia, aerial mycelia, and arthrospores on solid medium [19]. Substrate mycelium growth is sustaining with sufficient nutrients in the culture medium. The concentration of a specific individual substrate in the culture environment is the most important extracellular factor allowing vegetative mycelia growth, where extracellular hydrolytic enzymes participate in the utilization of waterinsoluble substrates. However, with starvation of nutrients in the culture medium, the vegetative mycelia differentiate to aerial mycelia and spores. It has been considered that shiftdown of essential nutrients for mycelia growth is the most important factor triggering morphological and physiological differentiation in Streptomyces spp. Since proteineous macromolecule compounds are the major cellular components, these are faced to endogenously metabolize following a severe depletion of nitrogen source in culture nutrients (Fig. 1). Various proteases were identified of which production was specifically related with the phase of mycelium growth and also morphological differentiation. The involvement of proteases and protease inhibitor is reviewed as a factor explaining the mycelium differentiation in Streptomyces spp.
Keywords
Streptomyces; morphological differentiation; protease; protease inhibitor; leupeptin inactivating enzyme; chymotrypsin; metalloprotease; Streptomyces griseus metalloprotease A;
Citations & Related Records

Times Cited By Web Of Science : 14  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Arima, J., M. Iwabuchi, and T. Hatanaka. 2004. Gene cloning and overproduction of an aminopeptidase from Streptomyces septatus TH-2, and comparison with a calcium-activated enzyme from Streptomyces griseus. Biochem. Biophys. Res. Commun. 317: 531-538   DOI   ScienceOn
2 Avbelj, F., J. Moult, D. H. Kitson, M. N. James, and A. T. Hagler. 1990. Molecular dynamics study of the structure and dynamics of a protein molecule in a crystalline ionic environment, Streptomyces griseus protease A. Biochemistry 29: 8658- 8678   DOI   ScienceOn
3 Bentley, S. D., K. F. Chater, A. M. Cerdeno-Tarraga, G. L. Challis, N. R. Thomson, K. D. James, D. E. Harris, M. A. Quail, H. Kieser, D. Harper, A. Bateman, S. Brown, G. Chandra, C. W. Chen, M. Collins, A. Cronin, A. Fraser, A. Goble, J. Hidalgo, T. Hornsby, S. Howarth, C. H. Huang, T. Kieser, L. Larke, L. Murphey, K. Oliver, S. O'Niel, E. Rabbinowitsch, M. A. Rajandream, K. Rutherford, S. Rutter, K. Seeger, D. Saunders, S. Sharp, R. Squares, S. Squares, K. Taylor, T. Warren, A. Wietzorrek, J. Woodward, B. G. Barrell, J. Parkhill, and D. A. Hopwood. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417: 141-147   DOI   ScienceOn
4 Butler, M. J., C. Binnie, M. A. DiZonno, P. Krygsmann, G. A. Soltes, G. Soostmeyer, E. Walezyk, and L. T. Malek. 1995. Cloning and characterization of a gene encoding a secreted tripeptidyl aminopeptidase from Streptomyces lividans 66. Appl. Environ. Microbiol. 61: 3145-3150
5 Butler, M. J., J. S. Aphale, C. Binnie, M. A. DiZonno, P. Krygsman, G. Soltes, E. Walczyk, and L. T. Malek. 1996. Cloning and analysis of a gene from Streptomyces lividans 66 encoding a novel secreted protease exhibiting homology to subtilisin $BPN^1$. Appl. Microbiol. Biotechnol. 45: 141-147   DOI
6 Greenblatt, H. M., O. Almog, B. Maras, A. Spungin-Bialik. D. Barra, S. Blumberg, and G. Shoham. 1997. Streptomyces griseus aminopeptidase: X-ray crystallographic structure at 1.75 A resolution. J. Mol. Biol. 265: 620-636   DOI   ScienceOn
7 Kakinuma, A., H. Sugino, N. Moriya, and M. Isono. 1978. Plasminostreptin, a protein proteinase inhibitor produced by Streptomyces antifibrinolyticus. I. Isolation and characterization. J. Biol. Chem. 253: 1529-1537
8 Kang, S. G., I. S. Kim, Y. T. Rho, and K. J. Lee. 1995. Production dynamics of extracellular proteases accompanying morphological differentiation of Streptomcyes albidoflavus SMF301. Microbiology 141: 3095-3103   DOI
9 Kang, S. G., R. G. W. Kenyon, A. C. Ward, and K. J. Lee. 1998. Analysis of the differentiation state in Streptomyces albidoflavus SMF301 by the combination of pyrolysis mass spectrometry and neural network. J. Biotech. 62: 1-10   DOI   ScienceOn
10 Kang, S. G., I. S. Kim, J. G. Ryu, Y. T. Rho. and K. J. Lee. 1995. Purification and characterization of trypsin-like protease and metalloprotease in Streptomyces albidoflavus SMF301. J. Microbiol. 33: 307-314
11 Kato, J., W. J. Chi, Y. Ohnishi, S. K. Hong, and S. Horinouhi. 2005. Transcriptional control by A-factor of two trypsin genes in Streptomyces griseus. J. Bacteriol. 187: 286-295   DOI   ScienceOn
12 Katoh, T., N. Kikuchi, K. Nagata, and N. Yoshida. 1996. A mutant trypsin-like enzyme from Streptomyces fradiae, created by site-directed mutagenesis, improves affinity chromatography for protein trypsin inhibitors. Appl. Microbiol. Biotechnol. 46: 15-21   DOI
13 Kim, I. S., H. T. Kim, H. S. Lee, and K. J. Lee. 1991. Protease inhibitor production using Streptomyces sp. SMF13. J. Microbiol. Biotech. 1: 288-292   DOI
14 Kim, I. S. and K. J. Lee. 1995. Physiological roles of leupeptin and extracellular proteases in mycelium development of Streptomyces exfoliatus SMF13. Microbiology 141: 1017-1025   DOI   ScienceOn
15 Kojima, S., I. Kumagai, and K. Miura. 1990. Effect on inhibitory activity of mutation at reaction site P4 of the Streptomyces subtilisin inhibitor, SSI. Protein Engineer. 3: 527-530   DOI
16 Kojima, S., T. Kumazaki, S. Ishii, and K, Miura. 1998. Primary structure of Streptomyces griseus metalloprotease II. Biosci. Biotechnol. Biochem. 62: 1392-1398   DOI   ScienceOn
17 Murao, S., S. Sato, and N. Muto. 1972. Studies on microbial alkaline protease inhibitor (SS-I) from Streptomyces albogriseolus S3253. 1. Isolation of alkaline protease inhibitor producing microorganisms. Agric. Biol. Chem. 36: 1737-1744   DOI
18 Kuramoto, A., A. Lezhava, S. Taguchi, H. Momose, and H. Kinashi. 1996. The location and deletion of the genes which code for SSI-like protease inhibitors in Streptomyces species. FEMS Microbiol. Lett. 139: 37-42   DOI
19 Lee, K. J. and Y. T. Rho. 1993. Characteristics of spores formed by surface and submerged cultures of Streptomyces albioflavus SMF 301. J. Gen. Microbiol. 139: 3131-3137   DOI   ScienceOn
20 Miguelez, E. M., C. Hardisson, and M. B. Manzanal. 1999. Hyphal death during colony development in Streptomyces antibioticus: Morphological evidence for the existence of a process of cell deletion in a multicellular prokaryote. J. Cell Biol. 145: 515-525   DOI
21 Nicieza R. G., J. Huergo, B. A. Connolly, and J. Sanchez. 1999. Purification, characterization, and role of nucleases and serine proteases in Streptomyces differentiation. J. Biol. Chem. 274: 20366-20375   DOI
22 Shin, H. S. and K. J. Lee. 1986. Regulation of extracellular alkaline proteases biosynthesis in a strain of Streptomyces sp. Kor. J. Microbiol. 24: 32-37   과학기술학회마을
23 Svendsen, I., M. R. Jensen, and K. Breddam. 1991. The primary structure of the glutamic acid-specific protease of Streptomyces griseus. FEBS Lett. 292: 165-167   DOI   ScienceOn
24 Hanada, S., T. Kinoshita, N. Kasai, S. Tsunasawa, and F. Sakiyama. 1995. Complete amino acid sequence of a zinc metalloprotease from Streptomyces caespitosus. Eur. J. Biochem. 233: 683-686   DOI   ScienceOn
25 Taguchi, S., S. Kojima, K. Miura, and H. Momose. 1996. Taxonomic characterization of closely related Streptomyces spp. based on the amino acid sequence analysis of protease inhibitor proteins. FEMS Microbiol. Lett. 135: 169-173   DOI
26 Taguchi, S., T. Ogawa, T. Endo, and H. Momose. 1997. A gene homologous to the Streptomyces chymotrypsin-like protease (SAM-P20) gene is tandemly located. Biosci. Biotechnol. Biochem. 61: 909-913   DOI   ScienceOn
27 Yamane, T., M. Kobuke, H. Tsutsui, T. Toida, A. Suzuki, T. Ashida, Y. Kawata, and F. Sakiyama. 1991. Crystal structure of Streptomyces erythraeus trypsin at 2.7 A resolution. J. Biochem. 110: 945-950   DOI
28 Umezawa, Y., K. Yokoyama, Y. Kikuchi, M. Date, K. Ito, T. Yoshimoto, and H. Matsui. 2004. Novel prolyl tri/tetrapeptidyl aminopeptidase from Streptomyces mobaraensis: Substrate specificity and enzyme gene cloning. J. Biochem. 136: 293-300   DOI   ScienceOn
29 Bauer, C. A. 1976. The active centers of Streptomyces griseus protease 3 and alpha-chymotrypsin. Enzyme-substrate interactions beyond subsite S'l. Biochim. Biophys. Acta 438: 495-502   DOI
30 Binnie, C., M. J. Butler, J. S. Aphale, R. Bourgault, M. A. DiZonno, P. Krygsman, L. Liao, E. Walczyk, and L. T. Malek. 1995. Isolation and characterization of two genes encoding proteases associated with the mycelium of Streptomyces lividans 66. J. Bacteriol. 177: 6033-6040   DOI
31 Olafson, R. W., L. Jurasek, M. R. Carpenter, and L. B. Smillie. 1975. Amino acid sequence of Streptomyces griseus trypsin. Cyanogen bromide fragments and complete sequence. Biochemistry 14: 168-1177
32 Murao, S. and S. Sato. 1973. SSI, a new alkaline protease inhibitor from Streptomyces albogriseolus S3253. Agric. Biol. Chem. 37: 160-163
33 Baltz, R. H. 1998. Genetic manipulation of antibiotic-producing Streptomyces. Trends Biochem. Sci. 6: 76-83
34 Kim, I. S. and K. J. Lee. 1996. Trypsin-like protease in Streptomyces exfoliatus SMF13, as a potential agent for mycelium differentiation. Microbiology 142: 1797-1806   DOI   ScienceOn
35 Krieger, T. J., D. Bartfeld, D. L. Jenish, and D. Hadary. 1994. Purification and characterization of a novel tripeptidyl aminopeptidase from Streptomyces lividans 66. FEBS Lett. 352: 385-388   DOI   ScienceOn
36 Suzuki, M., S. Taguchi, S. Yamada, S. Kojima, K. I. Miura, and H. Momose. 1997. A novel member of the subtilisin-like protease family from Streptomyces albogriseolus. J. Bacteriol. 179: 430-438   DOI
37 Kumazaki, T., K. Kajiwara, S. Kojima, K. Miura, and S. Ishii. 1993. Interaction of Streptomyces subtilisin inhibitor (SSI) with Streptomyces griseus metallo-endopeptidase II (SGMP II). J. Biochem. 114: 570-575   DOI
38 Butler, M. J., A. Bergeron, G. Soostmeyer, T. Zimmy, and L. T. Malek. 1993. Cloning and characterisation of an aminopeptidase P-encoding gene from Streptomyces lividans. Gene 123: 115-119   DOI   ScienceOn
39 Fernandez, M. and J. Sanchez. 2002. Nuclease activities and cell death processes associated with the development of surface cultures of Streptomyces antibioticus ETH7451. Microbiology 148: 405-412   DOI
40 Tsuyuki, H., K. Kajiwara, A. Fujita, T. Kumazaki, and S. Ishii. 1991. Purification and characterization of Streptomyces griseus metalloproteases I and II. J. Biochem. 110: 339-344   DOI
41 Tomono A., Y. Tsai, Y. Ohnishi, and S. Horinouchi. 2005. Three chymotrypsin genes are members of the AdpA regulon in the A-factor regulatory cascade in Streptomyces griseus. J. Bacteriol. 187: 6341-6353   DOI   ScienceOn
42 Chang, P. C., T. C. Kuo, A. Tsugita, and Y. H. Lee. 1990. Extracellular metalloprotease gene of Streptomyces cacaoi: Structure, nucleotide sequence and characterization of the cloned gene product. Gene 88: 87-95   DOI   ScienceOn
43 Kim, I. S., S. G. Kang, and K. J. Lee. 1995. Physiological importance of trypsin like protease during morphological differentiation of Streptomyces spp. J. Microbiol. 33: 315- 321
44 Takeuchi, Y., T. Nonaka, K. T. Nakamura, S. Kojima, and K. I. Miura. 1992. Crystal structure of an engineered subtilisin inhibitor complexed with bovine trypsin. Proc. Natl. Acad. Sci. USA 89: 4407-4411
45 Bormatova, M. E., N. M. Ivanova, M. P. Iuspova, T. L. Voiushina, I. A. Surova, G. G. Chestukhina, and V. M. Stepanov. 1996. Proteolytic enzymes from Streptomyces fradiae: A metalloendopeptidase, subtilisin-like, and trypsin-like proteinases. Biokhimiia 61: 344-356
46 Sidhu, S. S., G. B. Kalmar, L. G. Willis, and T. J. Borgford. 1994. Streptomyces griseus proteae C. A novel enzyme of the chymotrypsin superfamily. J. Biol. Chem. 269: 20167- 20171
47 Taguchi, S., H. Kikuchi, M. Suzuki, S. Kojima, M. Terabe, K. Miura, T. Nakase, and H. Momose. 1993. Streptomyces subtilisin inhibitor-like proteins are distributed widely in Streptomycetes. Appl. Environ. Microbiol. 59: 4338-4341
48 Jeong, B.C., S. G. Kang, Y. T. Rho, and K. J. Lee. 1992. Submerged spore formation and biosynthesis of extracellular protease in Streptomyces albidoflavus SMF301. Kor. J. Microbiol. 31: 566-572
49 Lee, K. J. 1998. Dynamics of morphological and physiological differentiation in actinomycetes group and quantitative analysis of the differentiation. J. Microbiol. Biotechnol. 8: 1-7
50 Kang, S. G. and K. J. Lee. 1997. Kinetic analysis of morphological differentiation and protease production in Streptomyces albidoflavus SMF301. Microbiology 143: 2709-2714   DOI   ScienceOn
51 Ueda, Y., S. Kojima, K. Tsumoto, S. Takeda, K. Miura, and I. Kumagai. 1992. A protease inhibitor produced by Streptomyces lividans 66 exhibits inhibitory activities toward both subtilisin BPN' and trypsin. J. Biochem. 112: 204-211   DOI
52 Kojima, S., Y. Nishiyama, I. Kumagai, and K. Mirura. 1991. Inhibition of subtilisin BPN' by reaction site P1 mutants of Streptomyces subtilisin inhibitor. J. Biochem. 109: 377- 382   DOI
53 Suzuki, Y., M. Yabuta, and K. Ohsuye. 1994. Cloning and expression of the gene encoding the glutamic acid-specific protease of Streptomyces griseus ATCC10137. Gene 150: 149-151   DOI   ScienceOn
54 Takeuchi, Y., Y. Satow, K. T. Nakamura, and Y. Mitsui. 1991. Refined crystal structure of the complex of subtilisin BPN and Streptomyces subtilisin inhibitor at 1.8 resolution. J. Mol. Biol. 221: 309-325
55 Satow, Y., Y. Mitsui, Y. Iitaka, and S. Sato. 1973. Crystallization and preliminary X-ray investigation of a new alkaline protease inhibitor and its complex with subtilisin BPN. J. Mol. Biol. 75: 745-746   DOI
56 Kim, I. S. and K. J. Lee. 1995. Nutritional regulation of morphological and physiological defferentiation on surface culture of Streptomyces exfoliatus SMF13. J. Microbiol. Biotechnol. 5: 200-205   과학기술학회마을
57 Ben-Meir, D., A. Spungin, R. Ashkenazi, and S. Blumberg. 1993. Specificity of Streptomyces griseus aminopeptidase and modulation of activity by divalent metal ion binding and substitution. Eur. J. Biochem. 212: 107-112   DOI   ScienceOn
58 Kato, J., S. Hirano, Y. Ohnishi, and S. Horinouchi. 2005. The Streptomyces subtilisin inhibitor (SSI) gene in Streptomyces coelicolor A(3)2. Biosci. Biotechnol. Biochem. 69: 1624- 1629   DOI   ScienceOn
59 Page, M. J., S. L. Wong, J. Hewitt, N. C. Strynadka, and R. T. MacGillivray. 2003. Engineering the primary substrate specificity of Streptomyces griseus trypsin. Biochemistry 42: 9060-9066   DOI   ScienceOn
60 Rho, Y. T. and K. J. Lee. 1994. Kinetic studies on spore formation of Streptomyces albidoflavus SMF301 in submerged culture. Microbiology 140: 2061-2065   DOI
61 Taguchi, S., A. Odaka, Y. Watanabe, and H. Momose. 1995. Molecular characterization of a gene encoding extracellular serine protease isolated from a subtilisin inhibitor-deficient mutant of Streptomyces albogriseolus S-3253. Appl. Environ. Microbiol. 61: 180-186
62 Olafson, R. W. and L. B. Smillie. 1975. Enzymic and physicochemical properties of Streptomyces griseus trypsin. Biochemistry 14: 1161-1167   DOI
63 Sidhu, S. S., G. B. Kalmar, and T. J. Borgford. 1993. Characterization of the gene encoding the glutamic-acid-specific protease of Streptomyces griseus. Biochem. Cell Biol. 71: 454-461   DOI   ScienceOn
64 Bauer, C. A., R. C. Thompson, and E. R. Blout. 1976. The active centers of Streptomyces griseus protease 3, alpha-chymotrypsin, and elastase: Enzyme-substrate interactions close to the scissile bond. Biochemistry 15: 1296-1299   DOI
65 Read, R. J. and M. N. James. 1988. Refined crystal structure of Streptomyces griseus trypsin at 1.7 A resolution. J. Mol. Biol. 200: 523-551   DOI
66 Almog, O., H. M. Greenblatt, A. Spungin, D. Ben-Meir, S. Blumberg, and G. Shoham. 1993. Crystallization and preliminary crystallographic analysis of Streptomyces griseus aminopeptidase. J. Mol. Biol. 230: 342-344   DOI   ScienceOn
67 Kim, D. W., K. F. Chater, K. J. Lee, and A. R. Hesketh. 2005. Effects of growth phase and the developmentally significant bldA-specified tRNA on the membrane associated proteome of Streptomyces coelicolor. Microbiology 151: 2707-2720   DOI   ScienceOn
68 Kitadokoro, K., H. Tsuzuki, H. Okamoto, and T. Sato. 1994. Crystal structure analysis of a serine proteinase from Streptomyces fradie at 0.16-nm resolution and molecular modeling of an acidic-amino-acid-specific proteinase. Eur. J. Biochem. 224: 735-742   DOI   ScienceOn
69 Lichenstein, H. S., L. A. Busse, G. A. Smith, L. O. Narhi, M. O. McGinley, M. F. Rohde, J. L. Katzowitz, and M. M. Zukowski. 1992. Cloning and characterization of a gene encoding extracellular metalloprotease from Streptomyces lividans. Gene 111: 125-130   DOI   ScienceOn
70 Yamane, T., A. Iwasaki, A. Suzuki, T. Ashida, and Y. Kawata. 1995. Crystal structure of Streptomyces erythraeus trypsin at 1.9 A resolution. J. Biochem. 118: 882-894   DOI
71 Kitadokoro, K., E. Nakamura, M. Tamaki, T. Horii, H. Okamoto, M. Shin, T. Sato, T. Fujiwara, H. Tsuzuki, and N. Yoshida. 1993. Purification, characterization and molecular cloning of an acidic amino acid-specific proteinase from Streptomyces fradie ATCC 14544. Biochim. Biophys. Acta 1163: 149-157   DOI   ScienceOn
72 Bauer, C. A. 1980. Active centers of alpha-chymotrypsin and Streptomyces griseus proteases 1 and 3. S2-P2 enzyme-substrate interaction. Eur. J. Biochem. 105: 565-570   DOI   ScienceOn
73 Butler, M. J., C. C. Davey, P. Krygsmann, E. Walczyk, and L. T. Malek. 1992. Cloning of genetic loci involved in endoprotease activity in Streptomyces lividans 66: A novel neutral protease gene with an adjacent divergent putative regulatory gene. Can. J. Microbiol. 38: 912-920   DOI   ScienceOn
74 Kim, J. C., S. H. Cha, S. T. Jeong, S. K. Oh, and S. M. Byun. 1991. Molecular cloning and nucleotide sequence of Streptomyces griseus trypsin gene. Biochem. Biophys. Res. Commun. 181: 707-713   DOI   ScienceOn
75 Van Mellaert, L., E. Lammertyn, S. Schacht, P. Proost, J. Van Damme, B. Wroblowski, J. Anne, T. Scarcez, E. Sablon, J. Raeymaeckers, and A. Van Broekhoven. 1998. Molecular characterization of a novel subtilisin inhibitor protein produced by Streptomyces venezuelae CBS762.70. DNA Seq. 9: 19- 30   DOI
76 Taguchi, S., T. Endo, Y. Naoi, and H. Momose. 1995. Molecular cloning and sequence analysis of a gene encoding an extracellular serine protease from Streptomyces lividans 66. Biosci. Biotechnol. Biochem. 59: 1386-1388   DOI   ScienceOn
77 Gibb, G. D. and W. R. Strohl. 1988. Physiological regulation of protease activity in Streptomyces peucetius. Can. J. Microbiol. 34: 187-190   DOI   ScienceOn
78 Barbosa, J. A., R. C. Garratt, and J. W. Saldanha. 1993. A structural model for the glutamate-specific endopeptidase from Streptomyces griseus that explains substrate specificity. FEBS Lett. 324: 45-50   DOI   ScienceOn
79 Kim, I. S. and K. J. Lee. 1995. Regulation of production of leupeptin, leupeptin inactivation enzyme and trypsin like protease in Streptomyces exfoliatus SMF13. J. Ferment. Bioeng. 80: 434-439   DOI   ScienceOn
80 Kim, I. S. and K. J. Lee. 1995. Kinetic study on the production and degradation of leupeptin in Streptomyces exfoliatus SMF13. J. Biotechnol. 42: 35-44   DOI   ScienceOn
81 Kurisu, G., T. Kinoshita, A. Sugimoto, A. Nagara, Y. Kai, N. Kasai, and S. Harada. 1997. Structure of the zinc endoprotease from Streptomyces caespitosus. J. Biochem. 121: 304-308   DOI   ScienceOn
82 Chang, P. C. and Y. H. Lee. 1992. Extracellular autoprocessing of a metalloprotease from Streptomyces cacaoi. J. Biol. Chem. 267: 3952-3958
83 Chater, K. F. 1988. Taking a genetic scalpel to the Streptomyces colony. Microbiology 144: 1465-1478
84 Kato, J., A. Suzuki, H. Yamazaki, Y. Ohnishi, and S. Horinouchi. 2002. Control by A-factor of a metalloendopeptidase gene involved in aerial mycelium formation in Streptomyces griseus. J. Bacteriol. 184: 6016-6025   DOI
85 Ohnishi, Y., S. Kameyama, H. Onaka, and S. Horinouchi. 1999. The A-factor regulatory cascade leading to streptomycin biosynthesis in Streptomyces griseus: Identification of a target gene of the A-factor receptor. Mol. Microbiol. 34: 102-111   DOI   ScienceOn
86 Taguchi, S., M. Suzuki, S. Kojima, and H. Momose. 1995. Streptomyces serine protease (SAM-P20): Recombinat production, characterization, and interaction with endogenous protease inhibitor. J. Bacteriol. 177: 6638-6643   DOI
87 Nagamine-Natsuka, Y., S. Norioka, and F. Sakiyama. 1995. Molecular cloning, nucleotide sequence, and expression of the gene encoding a trypsin-like protease from Streptomyces erythraeus. J. Biochem. 118: 338-346   DOI
88 Kreier, V. G., G. N. Rudenskaia, N. S. Landau, S. S. Pokrovskaia, and V. M. Stepanov. 1983. Subtilisin-like proteinase SSPB from Streptomyces spheroides, strain 35. Biokhimiia 48: 1365-1373
89 Zotzel, J., R. Pasternack, C. Pelzer, D. Ziegert, M. Mainusch, and H. L. Fuchsbauer. 2003. Activated transglutaminase from Streptomyces mobaraensis is processed by tripeptidyl aminopeptidase in the final step. Eur. J. Biochem. 270: 4149-4155   DOI   ScienceOn
90 Kim, I. S., H. T. Kim, A. C. Ward, M. Goodfellow, Y. C. Hah, and K. J. Lee. 1992. Numerical identification of a Streptomyces strain producing thiol protease inhibitor. J. Microbiol. Biotechnol. 2: 220-225
91 Read, R. J., G. D. Brayer, L. Jurasek, and M. N. James. 1984. Critical evaluation of comparative model building of Streptomyces griseus trypsin. Biochemistry 23: 6570-6575   DOI   ScienceOn
92 Rho, Y. T., J. W. Kim, and K. J. Lee. 1990. Effects of culture environments on alkaline protease biosynthesis in Streptomyces sp. Kor. J. Microbiol. 28: 162-168   과학기술학회마을
93 Chater, K. F. and S. Horinouchi. 2003. Signalling early developmental events in two highly diverged Streptomyces species. Mol. Microbiol. 48: 9-15   DOI   ScienceOn
94 Kim, D. W., K. F. Chater, K. J. Lee, and A. R. Hesketh. 2005. Changes in the extracellular proteome caused by the absence of the bldA gene product, a developmentally significant tRNA, reveal a new target for the pleiotropic regulator AdpA in Streptomyces coelicolor. J. Bacteriol. 187: 2957-2966   DOI   ScienceOn
95 Hatanaka, Y., H. Tsunematsu, K. Mizusaki, and S. Makisumi. 1985. Interactions of derivatives of guanidinophenylalanine and guanidinophenylglycine with Streptomyces griseus trypsin. Biochem. Biophys. Acta 832: 274-279   DOI   ScienceOn
96 Kim I. S., Y. B. Kim, and K. J. Lee. 1998. Characterization of the leupeptin-inactivating enzyme from Streptomyces exfoliatus SMF13 which produces leupeptin. Biochem. J. 331: 539-545   DOI
97 Kim, J. W., S. G. Kang, Y. T. Rho, and K. J. Lee. 1994. L-Cysteine metabolism and the effects on mycelium growth of Streptomyces albidoflavus SMF301 in submerged culture. J. Microbiol. Biotech. 4: 159-164
98 Stennicke, H. R., J. J. Birktoft, and K. Breddam. 1996. Characterization of the S1 binding site of the glutamic acid-specific protease from Streptomyces griseus. Protein Sci. 5: 2266-2275   DOI   ScienceOn