• Title/Summary/Keyword: greenhouse gas emission

Search Result 889, Processing Time 0.027 seconds

A Comparative Analysis on the Economic Effects Between New and Renewable- and Thermal- Power Generation in Korea (한국 신재생에너지발전과 화력발전의 경제적 파급효과 비교분석)

  • Kang, Ji Eun;Lee, Jung Ho;Park, Jung Gu
    • Journal of Energy Engineering
    • /
    • v.26 no.3
    • /
    • pp.51-63
    • /
    • 2017
  • Paris Agreement on Climate Change(2015) requires to reduce the greenhouse gas emission. One of the responses to the requirement is to change the proportion of power generation, which is summarized to the decrease in thermal power and the increase in new and renewable power. This article conducts a comparative analysis on the economic effects between thermal- and new and renewable- power generations, using the Input-Output Table from The Bank of Korea. The results of this analysis show that the new and renewable power generation has got the larger effects in production-inducing, value-added-inducing, employment-inducing, and supply-shortage scopes, while the smaller effect in price-pervasive scope than the thermal power generation. According to these results, the complex consideration should be taken into when the changes in power generation mix are tried. Especially, the political efforts to reduce the supply-shortage effect of new and renewable power and the price-pervasive effect of thermal power will be important.

A Study on Competitiveness and GHG Mitigation Effect of IGCC and Carbon Capture Technology According to Carbon Tax Change (탄소세 변화에 따른 IGCC와 이산화탄소 저감기술 진입경쟁력 및 온실가스 저감효과 분석)

  • Jeon, Young-Shin;Kim, Young-Chang;Kim, Hyung-Taek
    • Journal of Energy Engineering
    • /
    • v.17 no.2
    • /
    • pp.54-66
    • /
    • 2008
  • After the Kyoto Protocol has been ratified in Feb. 16 2005, the developed countries which is involved in Annex-1 have tried to mitigate GHG to the reduction objective. To accomplish this objective, EU developed EU-ETS, CDM project, and so on. Korea has faced pressure to be a member of Annex-1, because Korea and Mexico are only non-Annex-1 countries in the OECD nations. In this study, we simulated power plant expansion plan and calculated $CO_2$ emission with changing Carbon Tax. Especially, we focused on the competitiveness of IGCC and carbon capture technology. In our result, even though carbon tax rise, nuclear power plant does not always increase, it increase up to minimum load. LNG combined cycle power plants substitute the coal fired power plants. If there are many alternatives like IGCC, these substitute a coal fired power plant and we can reduce more $CO_2$ and save mitigation cost.

Health and Environmental Risk Assessment of Pollutants in Pohang (포항지역 오염물질 보건.환경 위해성 평가 -미세먼지의 발생특성 및 농도분포를 중심으로-)

  • Jung, Jong-Hyeon;Choi, Won-Joon;Leem, Heon-Ho;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2719-2726
    • /
    • 2010
  • The purpose of this study was to investigate the scientific basic grounds for the assessment of health and environmental diseases resulting from air pollutants in Pohang. For this study, we investigated pollutants, weather characteristics and concentration distribution of fine particles ($PM_10$) yearly and each season, using data from Air Quality Monitoring Stations. The properties of concentration distribution and seasonal fluctuation of $PM_10$ were studied qualitatively and quantitatively using CALPUFF, air dispersion model. The average concentration of $PM_10$ for each season was spring($75.7{\mu}g/m^3$)>summer($56.8{\mu}g/m^3$)>winter($53.6{\mu}g/m^3$)>fall( $52.7{\mu}g/m^3$). In the case of spring, high concentrations appear due to the Asian dust frequently occurring. The contributions of $PM_10$ classified by the types of pollution source in Pohang were point source 62%>mobile source 33%>area source 5%. An important point is that 97% of emissions were produced from the iron manufacture in steel industry. Therefore, it is necessary to control the emission sources of pollutants and to construct an observation system at Pohang steel industrial complex from now on. It’s time to control the risk factors for health and environmental disease to protect the health of resident in Pohang and its neighboring areas.

Automatic Classification by Land Use Category of National Level LULUCF Sector using Deep Learning Model (딥러닝모델을 이용한 국가수준 LULUCF 분야 토지이용 범주별 자동화 분류)

  • Park, Jeong Mook;Sim, Woo Dam;Lee, Jung Soo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_2
    • /
    • pp.1053-1065
    • /
    • 2019
  • Land use statistics calculation is very informative data as the activity data for calculating exact carbon absorption and emission in post-2020. To effective interpretation by land use category, This study classify automatically image interpretation by land use category applying forest aerial photography (FAP) to deep learning model and calculate national unit statistics. Dataset (DS) applied deep learning is divided into training dataset (training DS) and test dataset (test DS) by extracting image of FAP based national forest resource inventory permanent sample plot location. Training DS give label to image by definition of land use category and learn and verify deep learning model. When verified deep learning model, training accuracy of model is highest at epoch 1,500 with about 89%. As a result of applying the trained deep learning model to test DS, interpretation classification accuracy of image label was about 90%. When the estimating area of classification by category using sampling method and compare to national statistics, consistency also very high, so it judged that it is enough to be used for activity data of national GHG (Greenhouse Gas) inventory report of LULUCF sector in the future.

A Study on The Factors of Policy Change in Latecomer Nations : Through the case of Korea's renewable energy policy change (후발국의 제도 변화 요인 연구 : 한국의 신재생에너지 정책 변동 사례를 통해)

  • Yoon, Youngchul;Choung, Jae-Yong
    • Journal of Technology Innovation
    • /
    • v.27 no.2
    • /
    • pp.1-36
    • /
    • 2019
  • In line with the international community's movement to reduce greenhouse gas emission, Korea implemented FIT(Feed in Tariff) in 2002 as part of its renewable energy development project. Although the policy had shifted to full-scale RPS(Renewable Portfolio Standards) in 2012, policymakers are still seeking changes due to policy ineffectiveness. While previous studies explain sudden policy changes through external factors, recent research sheds light on internal factors in the process of policy transition. The purpose of this study is to investigate the factors that are responsible for rapidly changing policies in latecomer nations. In order to find this, we look at the case of transition from the FIT to the RPS in Korea's expansion of renewable energy policy. As a result of the research, it is confirmed that the Top-Down decision making system of Korea and the external regulatory change cause rapid policy transition. By looking at these variables, we propose useful implications for policymakers to minimize the policy failure in future policy design and evolution.

Agro-Environmental Observation in a Rice Paddy under an Agrivoltaic System: Comparison with the Environment outside the System (영농형 태양광 시설 하부 논에서의 농업환경 관측 및 시설 외부 환경과의 비교)

  • Kang, Minseok;Sohn, Seungwon;Park, Juhan;Kim, Jongho;Choi, Sung-Won;Cho, Sungsik
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.3
    • /
    • pp.141-148
    • /
    • 2021
  • Agrivoltaic systems, also called solar sharing, stated from an idea that utilizes sunlight above the light saturation point of crops for power generation using solar panels. It is expected that agrivoltaic systems can realize climate smart agriculture by reducing evapotranspiration and methane emission due to the reduction of incident solar radiation and the consequent surface cooling effect and bring additional income to farms through solar power generation. In this study, to evaluate that agrivoltaic systems are suitable for realization of climate smart agriculture, we conducted agro-environmental observations (i.e., downward/upward shortwave/longwave radiations, air temperature, relative humidity, water temperature, soil temperature, and wind speed) in a rice paddy under an agrivoltaic system and compared with the environment outside the system using automated meteorological observing systems (AMOS). During the observation period, the spatially averaged incoming solar radiation under the agrivoltaic system was about 70% of that in the open paddy field, and clear differences in the soil and water temperatures between the paddy field under the agrivoltaic system and the open paddy field were confirmed, although the air temperatures were similar. It is required in the near future to confirm whether such environmental differences lead to a reduction in water consumption and greenhouse gas emissions by flux measurements.

Treatment Technology of N2O by using Bunsen Premixed Flame (분젠 예혼합 화염을 활용한 아산화질소 처리기술에 관한 연구)

  • Jin, Si Young;Seo, Jaegeun;Kim, Heejae;Shin, Seung Hwan;Nam, Dong Hyun;Kim, Sung Min;Kim, Daehae;Yoon, Sung Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.153-160
    • /
    • 2021
  • Nitrous oxide is a global warming substance and is known as the main cause of the destruction of the ozone layer because its global warming effect is 310 times stronger than carbon dioxide, and it takes 120 years to decompose. Therefore, in this study, we investigated the characteristics of NOx emission from N2O reduction by thermal decomposition of N2O. Bunsen premixed flames were adopted as a heat source to form a high-temperature flow field, and the experimental variables were nozzle exit velocity, co-axial velocity, and N2O dilution rate. NO production rates increased with increasing N2O dilution rates, regardless of nozzle exit velocities and co-axial flow rates. For N2O, large quantities were emitted from a stable premixed flame with suppressed combustion instability (Kelvin Helmholtz instability) because the thermal decomposition time is not sufficient with the relatively short residence time of N2O near the flame surface. Thus, to improve the reduction efficiency of N2O, it is considered effective to increase the residence time of N2O by selecting the nozzle exit velocities, where K-H instability is generated and formed a flow structure of toroidal vortex near the flame surface.

Comparison of Construction Cost Applied by RC and PC Construction Method for Apartment House and Establishment of OSC Economic Analysis Framework (공동주택 RC 및 PC공법 적용 공사비 비교 및 OSC의 포괄적 경제성 분석 프레임워크 구축)

  • Yun, Won-Gun;Bae, Byung-Yun;Kang, Tai-Kyung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.6
    • /
    • pp.30-42
    • /
    • 2022
  • OSC is a type of supply chain and value chain that spans the entire process of construction production (planning, design, construction, maintenance, etc.). It is a method of producing the final object by manufacturing it in a factory, transporting it to the site, installing and construction. This research as is the construction cost was compared for each case A, which applied the PC method, and case B, which applied the RC method. In the case of applying the PC method (excluding the PC design cost), compared to the case where only the RC method was applied, the frame construction cost per unit quantity (m3) increased by about 70% (50% based on the total RC construction type). Of the total frame construction cost of PC method application, PC accounted for 90.2%, 'PC manufacturing cost' 54.8%, 'PC assembly cost' 28.5%, and 'transportation cost' accounted for 6.89%. Also a decision-making framework that can consider both costs and benefits was established. In the case of benefits, the construction period, defect repair, disaster occurrence, energy efficiency, noise/dust/waste, and greenhouse gas emission indicators reflecting OSC technical advantages were presented. It can contribute to providing a basis for helping decision-making on the introduction of PC apartment houses using OSC.

Future Projection of Extreme Climate over the Korean Peninsula Using Multi-RCM in CORDEX-EA Phase 2 Project (CORDEX-EA Phase 2 다중 지역기후모델을 이용한 한반도 미래 극한 기후 전망)

  • Kim, Do-Hyun;Kim, Jin-Uk;Byun, Young-Hwa;Kim, Tae-Jun;Kim, Jin-Won;Kim, Yeon-Hee;Ahn, Joong-Bae;Cha, Dong-Hyun;Min, Seung-Ki;Chang, Eun-Chul
    • Atmosphere
    • /
    • v.31 no.5
    • /
    • pp.607-623
    • /
    • 2021
  • This study presents projections of future extreme climate over the Korean Peninsula (KP), using bias-corrected data from multiple regional climate model (RCM) simulations in CORDEX-EA Phase 2 project. In order to confirm difference according to degree of greenhouse gas (GHG) emission, high GHG path of SSP5-8.5 and low GHG path of SSP1-2.6 scenario are used. Under SSP5-8.5 scenario, mean temperature and precipitation over KP are projected to increase by 6.38℃ and 20.56%, respectively, in 2081~2100 years compared to 1995~2014 years. Projected changes in extreme climate suggest that intensity indices of extreme temperatures would increase by 6.41℃ to 8.18℃ and precipitation by 24.75% to 33.74%, being bigger increase than their mean values. Both of frequency indices of the extreme climate and consecutive indices of extreme precipitation are also projected to increase. But the projected changes in extreme indices vary regionally. Under SSP1-2.6 scenario, the extreme climate indices would increase less than SSP5-8.5 scenario. In other words, temperature (precipitation) intensity indices would increase 2.63℃ to 3.12℃ (14.09% to 16.07%). And there is expected to be relationship between mean precipitation and warming, which mean precipitation would increase as warming with bigger relationship in northern KP (4.08% ℃-1) than southern KP (3.53% ℃-1) under SSP5-8.5 scenario. The projected relationship, however, is not significant for extreme precipitation. It seems because of complex characteristics of extreme precipitation from summer monsoon and typhoon over KP.

Analysis of CO/CO2 Ratio Variability According to the Origin of Greenhouse Gas at Anmyeon-do (안면도 지역 온실기체 기원에 따른 CO/CO2 비율 변동성 분석 연구)

  • Kim, Jaemin;Lee, Haeyoung;Kim, Sumin;Chung, Chu-Yong;Kim, Yeon-Hee;Lee, Greem;Choi, Kyung Bae;Lee, Yun Gon
    • Atmosphere
    • /
    • v.31 no.5
    • /
    • pp.625-635
    • /
    • 2021
  • South Korea established the 2050 Carbon Neutral Plan in response to the climate crisis, and to achieve this policy, it is very important to monitor domestic carbon emissions and atmospheric carbon concentration. Both CO2 and CO are emitted from fossil fuel combustion processes, but the relative ratios depend on the combustion efficiency and the strength of local emission regulations. In this study, the relationship between CO2 and CO was analyzed using ground observation data for the period of 2018~2020 at Anmyeon-do site and the CO/CO2 ratio according to regional origin during high CO2 cases was investigated based on the footprint simulated from Stochastic Time-Inverted Lagrangian Transport (STILT) model. CO2 and CO showed a positive correlation with correlation coefficient of 0.66 (p < 0.01), and averaged footprints during high CO2 cases confirmed that air particles mainly originated from eastern and north-eastern China, and inland of Korean Peninsula. In addition, it was revealed that among the cases of high CO2 concentration, when the CO/CO2 ratio is high, the industrial area of eastern China is greatly affected, and when the ratio is low, the contribution of the domestic region is relatively high. The ratio of CO2 and CO in this study is significant in that it can be used as a useful factor in determining the possibility of domestic and foreign origins of climate pollutants.