Browse > Article
http://dx.doi.org/10.14191/Atmos.2021.31.5.625

Analysis of CO/CO2 Ratio Variability According to the Origin of Greenhouse Gas at Anmyeon-do  

Kim, Jaemin (Atmospheric Sciences, Department of Astronomy, Space science, and Geology, Chungnam National University)
Lee, Haeyoung (National Institute of Meteorological Sciences)
Kim, Sumin (National Institute of Meteorological Sciences)
Chung, Chu-Yong (National Institute of Meteorological Sciences)
Kim, Yeon-Hee (National Institute of Meteorological Sciences)
Lee, Greem (National Institute of Environmental Research)
Choi, Kyung Bae (Atmospheric Sciences, Department of Astronomy, Space science, and Geology, Chungnam National University)
Lee, Yun Gon (Atmospheric Sciences, Department of Astronomy, Space science, and Geology, Chungnam National University)
Publication Information
Atmosphere / v.31, no.5, 2021 , pp. 625-635 More about this Journal
Abstract
South Korea established the 2050 Carbon Neutral Plan in response to the climate crisis, and to achieve this policy, it is very important to monitor domestic carbon emissions and atmospheric carbon concentration. Both CO2 and CO are emitted from fossil fuel combustion processes, but the relative ratios depend on the combustion efficiency and the strength of local emission regulations. In this study, the relationship between CO2 and CO was analyzed using ground observation data for the period of 2018~2020 at Anmyeon-do site and the CO/CO2 ratio according to regional origin during high CO2 cases was investigated based on the footprint simulated from Stochastic Time-Inverted Lagrangian Transport (STILT) model. CO2 and CO showed a positive correlation with correlation coefficient of 0.66 (p < 0.01), and averaged footprints during high CO2 cases confirmed that air particles mainly originated from eastern and north-eastern China, and inland of Korean Peninsula. In addition, it was revealed that among the cases of high CO2 concentration, when the CO/CO2 ratio is high, the industrial area of eastern China is greatly affected, and when the ratio is low, the contribution of the domestic region is relatively high. The ratio of CO2 and CO in this study is significant in that it can be used as a useful factor in determining the possibility of domestic and foreign origins of climate pollutants.
Keywords
Carbon dioxide; carbon monoxide; footprint; CO/CO2 ratio; 2050 carbon neutral plan;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Lee, S., and Coauthors, 2019b: Analysis of long-range transboundary transport (LRTT) effect on Korean aerosol pollution during the KORUS-AQ campaign. Atmos. Environ., 204, 53-67, doi:10.1016/j.atmosenv.2019.02.020.   DOI
2 Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341.   DOI
3 Lee, C., A. Richter, H. Lee, Y. J. Kim, J. P. Burrows, Y. G. Lee, and B. C. Choi, 2008: Impact of transport of sulfur dioxide from the Asian continent on the air quality over Korea during May 2005. Atmos. Environ., 42, 1461-1475.   DOI
4 Lee, S., C.-H. Ho, and Y.-S. Choi, 2011: High-PM10 concentration episodes in Seoul, Korea: Background sources and related meteorological conditions. Atmos. Environ., 45, 7240-7247, doi:10.1016/j.atmosenv.2011.08.071.   DOI
5 Park, S.-H., A. S. Panicker, D.-I. Lee, W.-S. Jung, S.-M. Jang, M. Jang, D. Kim, Y.-W. Kim, and H. Jeong, 2010: Characterization of chemical properties of atmospheric aerosols over Anmyeon (South Korea), a super site under Global Atmosphere Watch. J. Atmos. Chem., 67, 71-86, doi:10.1007/s10874-011-9205-2.   DOI
6 Ding, A., T. Wang, and C. Fu, 2013: Transport characteristics and origins of carbon monoxide and ozone in Hong Kong, South China. J. Geophys. Res. Atmos., 118, 9475-9488, doi:10.1002/jgrd.50714.   DOI
7 Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. Atmos., 116, D12109, doi:10.1029/2010JD015139.   DOI
8 Silva, S. J., A. F. Arellano, and H. M. Worden, 2013: Toward anthropogenic combustion emission constraints from space-based analysis of urban CO2/CO sensitivity. Geophys. Res. Lett., 40, 4971-4976, doi:10.1002/grl.50954.   DOI
9 Ana, G. R., and O. O. Ogunseye, 2015: Spatio-temporal variations in carbon monoxide and carbon dioxide levels in three motor parks in Ibadan, Nigeria. Int. J. Environ. Monitor. Anal., 3, 411-419, doi:10.11648/j.ijema.20150306.15.   DOI
10 Conway, T. J., L. P. Steele, and P. C. Novelli, 1993: Correlations among atmospheric CO2, CH4 and CO in the Arctic, March 1989. Atmos. Environ., 27A, 2881-2894.
11 Halliday, H. S., and Coauthors, 2019: Using short-term CO/CO2 ratios to assess air mass differences over the Korean Peninsula during KORUS-AQ. J. Geophys. Res. Atmos., 124, 10951-10972, doi:10.1029/2018JD029697.   DOI
12 Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). J. Korean Meteor. Soc., 42, 129-151.
13 Janjic, Z. I., 2002: Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP meso model. NCEP Office Note No. 437, 61 pp.
14 Jeon, W.-B., H. W. Lee, S.-H. Lee, J.-H. Park, and H.-G. Kim, 2014: Numerical study on the characteristics of high PM2.5 episodes in Anmyeondo area in 2009. J. Environ. Sci. Int., 23, 249-259, doi:10.5322/JESI.2014.23.2.249 (in Korean with English abstract).   DOI
15 Wei, C., M. Wang, Q. Fu, C. Dai, R. Huang, and Q. Bao, 2020: Temporal characteristics of greenhouse gases (CO2 and CH4) in the megacity Shanghai, China: Association with air pollutants and meteorological conditions. Atmos. Res., 235, 104759, doi:10.1016/j.atmosres.2019.104759.   DOI
16 Thoning, K. W., P. P. Tans, and W. D. Komhyr, 1989: Atmospheric carbon dioxide at mauna loa observatory: 2. Analysis of the NOAA GMCC data, 1974-1985. J. Geophys. Res. Atmos., 94, 8549-8565.   DOI
17 Wang, Y., J. W. Munger, S. Xu, M. B. McElroy, J. Hao, C. P. Nielsen, and H. Ma, 2010: CO2 and its correlation with CO at a rural site near Beijing: implications for combustion efficiency in China. Atmos. Chem. Phys., 10, 8881-8897, doi:10.5194/acp-10-8881-2010.   DOI
18 Ward, D. E., W. M. Hao, R. A. Susott, R. E. Babbitt, R. W. Shea, J. B. Kauffman, and C. O. Justice, 1996: Effect of fuel composition on combustion efficiency and emission factors for African savanna ecosystems. J. Geophys. Res. Atmos., 101, 23569-23576.   DOI
19 Kim, J., S. Park, M.-K. Park, S. Li, J.-Y. Kim, C. O. Jo, J.-Y. Kim, and K.-R. Kim, 2013: Parameter optimization and automation of the FLEXPART lagrangian particle dispersion model for atmospheric back-trajectory analysis. Atmosphere, 23, 93-102, doi:10.14191/Atmos.2013.23.1.093 (in Korean with English abstract).   DOI
20 Kim, H.-K., C.-K. Song, S.-C. Hong, M.-H. Shin, J. Seo, S.-K. Kim, and Y. Lyu, 2020: Source characteristics of atmospheric CO2 and CH4 in a northeastern highland area of South Korea. Atmosphere, 11, 509, doi:10.3390/atmos11050509.   DOI
21 Jung, J., Y. Lyu, M. Lee, T. Hwang, S. Lee, and S. Oh, 2016: Impact of Siberian forest fires on the atmosphere over the Korean Peninsula during summer 2014. Atmos. Chem. Phys., 16, 6757-6770, doi:10.5194/acp-16-6757-2016.   DOI
22 Wang, J., J. F. D. Rodrigues, M. Hu, P. Behrens, and A. Tukker, 2019: The evolution of Chinese industrial CO2 emissions 2000~2050: A review and meta-analysis of historical drivers, projections and policy goals. Renew. Sust. Energ. Rev., 116, 109433, doi:10.1016/j.rser.2019.109433.   DOI
23 Li, S., S. Park, M.-K. Park, C. O. Jo, J.-Y. Kim, J.-Y. Kim, and K.-R. Kim, 2014: Statistical back trajectory analysis for estimation of CO2 emission source regions. Atmosphere, 24, 245-251, doi:10.14191/Atmos.2014.24.2.245 (in Korean with English abstract).   DOI
24 Li, S., Y. Kim, J. Kim, S. T. Kenea, T.-Y. Goo, L. D. Labzovskii, and Y.-H. Byun, 2020: In situ aircraft measurements of CO2 and CH4: mapping spatio-temporal variations over western Korea in high-resolutions. Remote Sens., 12, 3093, doi:10.3390/rs12183093.   DOI
25 Lin, J. C., C. Gerbig, S. C. Wofsy, A. E. Andrews, B. C. Daube, K. J. Davis, and C. A. Grainger, 2003: A near-field tool for simulating the upstream influence of atmospheric observations: The Stochastic Time-Inverted Lagrangian Transport (STILT) model. J. Geophys. Res. Atmos., 108, 4493.
26 NIMS, 2020: Report of Global Atmosphere Watch 2020. National Institute of Meteorological Sciences, 411 pp (in Korean).
27 Park, H., S. Jeong, H. Park, L. D. Labzovskii, and K. W. Bowman, 2021: An assessment of emission characteristics of Northern Hemisphere cities using spaceborne observations of CO2, CO, and NO2. Remote Sens. Environ., 254, 112246, doi:10.1016/j.rse.2020.112246.   DOI
28 Wen, D., J. C. Lin, D. B. Millet, A. F. Stein, and R. R. Draxler, 2012: A backward-time stochastic Lagrangian air quality model. Atmos. Environ., 54, 373-386, doi:10.1016/j.atmosenv.2012.02.042.   DOI
29 Ye, Q., and H. Liang, 2018: The driving force of carbon emissions in china: 1995-2015 hierarchically provincial evidence. IOP Conf. Ser.: Earth Environ. Sci., 170, 032044, doi:10.1088/1755-1315/170/3/032044.   DOI
30 Mllawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos., 102, 16663-16682.   DOI
31 Zheng, B., F. Chevallier, P. Ciais, Y. Yin, M. N. Deeter, H. M. Worden, Y. Wang, Q. Zhang, and K. He, 2018: Rapid decline in carbon monoxide emissions and export from East Asia between years 2005 and 2016. Environ. Res. Lett., 13, 044007, doi:10.1088/1748-9326/aab2b3.   DOI
32 WMO, 2019: The Global Climate in 2015-2019. World Meteorological Organization, 21 pp.
33 Lee, H., S.-O. Han, S.-B. Ryoo, J.-S. Lee, and G.-W. Lee, 2019a: The measurement of atmospheric CO2 at KMA GAW regional stations, its characteristics, and comparisons with other East Asian sites. Atmos. Chem. Phys., 19, 2149-2163, doi:10.5194/acp-19-2149-2019.   DOI