• Title/Summary/Keyword: greenhouse effect

Search Result 1,208, Processing Time 0.036 seconds

Agro-Environmental Observation in a Rice Paddy under an Agrivoltaic System: Comparison with the Environment outside the System (영농형 태양광 시설 하부 논에서의 농업환경 관측 및 시설 외부 환경과의 비교)

  • Kang, Minseok;Sohn, Seungwon;Park, Juhan;Kim, Jongho;Choi, Sung-Won;Cho, Sungsik
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.3
    • /
    • pp.141-148
    • /
    • 2021
  • Agrivoltaic systems, also called solar sharing, stated from an idea that utilizes sunlight above the light saturation point of crops for power generation using solar panels. It is expected that agrivoltaic systems can realize climate smart agriculture by reducing evapotranspiration and methane emission due to the reduction of incident solar radiation and the consequent surface cooling effect and bring additional income to farms through solar power generation. In this study, to evaluate that agrivoltaic systems are suitable for realization of climate smart agriculture, we conducted agro-environmental observations (i.e., downward/upward shortwave/longwave radiations, air temperature, relative humidity, water temperature, soil temperature, and wind speed) in a rice paddy under an agrivoltaic system and compared with the environment outside the system using automated meteorological observing systems (AMOS). During the observation period, the spatially averaged incoming solar radiation under the agrivoltaic system was about 70% of that in the open paddy field, and clear differences in the soil and water temperatures between the paddy field under the agrivoltaic system and the open paddy field were confirmed, although the air temperatures were similar. It is required in the near future to confirm whether such environmental differences lead to a reduction in water consumption and greenhouse gas emissions by flux measurements.

The Effect of Supercritical Carbonation on Quality Improvement of Recycled Fine Aggregate (초임계 탄산화 반응이 순환잔골재의 품질개선에 미치는 영향)

  • Heo, Seong-Uk;Kim, Ji-Hyun;Chung, Chul-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.1
    • /
    • pp.33-40
    • /
    • 2021
  • The objective of this work is to prove a possibility of void f illing through a carbonation f or the purpose of improving the quality of recycled aggregate. Carbonation can permanently immobilize CO2, which is a greenhouse gas, and thus provides additional benefit on environment. In this work, recycled fine aggregate was reacted using gaseous CO2 and supercritical CO2(scCO2) in a closed chamber, and the changes in physical properties of the recycled f ine aggregate bef ore and af ter carbonation were analyzed using the apparent density, skeletal density, pH, and FE-SEM measurements. Thereafter, a mortar specimen was prepared and a compressive strength was measured. According to the experimental results, it was found that the increase in the apparent density and the true density was higher by the reaction with scCO2, which was conducted at high temperature and high pressure compared to the reaction with gaseous CO2. In addition, the pH of the eluted water was found to have a larger initial decrease than that observed with samples from reaction by gaseous CO2. The shape and amount of calcium carbonate crystals were also found to be larger than that from gaseous CO2. The increase in compressive strength was the largest when using recycled fine aggregate reacted with scCO2. It was clear that quality improvement of recycled fine aggregate was higher with scCO2 than with gaseous CO2.

Treatment Technology of N2O by using Bunsen Premixed Flame (분젠 예혼합 화염을 활용한 아산화질소 처리기술에 관한 연구)

  • Jin, Si Young;Seo, Jaegeun;Kim, Heejae;Shin, Seung Hwan;Nam, Dong Hyun;Kim, Sung Min;Kim, Daehae;Yoon, Sung Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.153-160
    • /
    • 2021
  • Nitrous oxide is a global warming substance and is known as the main cause of the destruction of the ozone layer because its global warming effect is 310 times stronger than carbon dioxide, and it takes 120 years to decompose. Therefore, in this study, we investigated the characteristics of NOx emission from N2O reduction by thermal decomposition of N2O. Bunsen premixed flames were adopted as a heat source to form a high-temperature flow field, and the experimental variables were nozzle exit velocity, co-axial velocity, and N2O dilution rate. NO production rates increased with increasing N2O dilution rates, regardless of nozzle exit velocities and co-axial flow rates. For N2O, large quantities were emitted from a stable premixed flame with suppressed combustion instability (Kelvin Helmholtz instability) because the thermal decomposition time is not sufficient with the relatively short residence time of N2O near the flame surface. Thus, to improve the reduction efficiency of N2O, it is considered effective to increase the residence time of N2O by selecting the nozzle exit velocities, where K-H instability is generated and formed a flow structure of toroidal vortex near the flame surface.

Growth Characteristics and Yields According to EC Concentrations and Substrates in Paprika (파프리카 수경재배 시 EC 농도와 배지에 따른 생육 및 수량 특성)

  • Hong, Youngsin;Lee, Jaesu;Baek, Jeonghyun;Lee, Sanggyu;Chung, Sunok
    • Journal of Environmental Science International
    • /
    • v.30 no.8
    • /
    • pp.605-612
    • /
    • 2021
  • Supply electrical conductivity (EC) concentration of the nutrition solution is an important factor in the absorption of nutrients by plants and the management of the root zone, as it can control the vegetative/reproductive growth of a plant. Paprika usually undergoes its reproductive and vegetative growth simultaneously. Therefore, ensuring proper growth of the plant leads to increased yield of paprika. In this study, growth characteristics of paprika were examined according to the EC concentration of a coir and a rockwool substrate. The supply EC was 1.0, 2.0, and 4.0 mS·cm-1 applied at the initial stages of the growth using the rockwool (commonly used by paprika farmers) and the coir substrate with a chip and dust ratio of 50:50 and 70:30. For up to 16 weeks of paprika growth, EC concentrations of 1.0 and 2.0 mS·cm-1 were found to have a greater effect on the growth than EC at 4.0 mS·cm-1. The normality (marketable) rate of fruit, the soluble solid content, and paprika growth showed that the coir was generally better than the rockwool regardless of the supply EC concentration. The values of the yield per plant at an EC concentration of 4.0 mS·cm-1 was mostly similar at 1.6 kg (coir 50:50), 1.5 kg (coir 70:30) and 1.5 kg (rockwool), but the yield of the rockwool was 88%, which was lower than 98% and 94% yield of the coir substrate. Therefore, this concludes that coir substrate is more effective than rockwool at improving paprika productivity. The results also suggest that the use of coir substrate for paprika has many benefits in terms of reducing production costs and preventing environmental destruction during post-processing.

Proper Installation Distance for Heating Effect of Nano-Carbon Fiber Infrared Heating Lamp for Stable Production of Watermelon Grafted Seedlings in Winter Season (동절기 수박 접목묘의 안정적 생산을 위한 나노탄소섬유적외선 램프의 난방효과에 대한 적정 설치간격)

  • Kim, Hye Min;Jeong, Hyeon Woo;Hwang, Hee Sung;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.31 no.1
    • /
    • pp.8-13
    • /
    • 2022
  • This study was carried out to investigate the proper wattage and installation distance for the efficient use of nano-carbon fiber infrared heating lamp (NCFIHL), a heating device advantageous for heating energy saving, when the production of watermelon plug seedlings in the plug seedling nursery in winter season. Six small beds were divided into plastic film, and 700 W and 900 W nano-carbon fiber infrared heating lamps were installed at 100 cm above the bed. 1 lamp at central (control), 60 cm interval (2 lamps), and 40 cm interval (3 lamps) heating lamps were installed in each bed inside the greenhouse. All treatments, except the control, were set to keep the night air temperature at 20℃ after lighting the NCFIHL. The leaf temperature showed a tendency to increase fast as the install distance was narrow. The leaf length and leaf width tended to increase as the installation distance of the 700 W heating lamp was narrow. The compactness was high in 700 W heating lamp with 40 cm of installation distance. Therefore, in consideration of maintaining the set temperature at night, installing 700 W electric lamps at 40 cm was an efficient power and installation distance for watermelon grafted seedlings considering economic feasibility.

Kinetics of CO2 Absorption in Aqueous DETA and DEEA Solutions by Wetted-Wall Column (젖은 벽탑을 이용한 디에틸렌트리아민과 디에틸에탄올아민 수용액의 CO2 흡수속도 측정)

  • You, Jong Kyun;Lee, Jun;Hong, Yeon Ki
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.582-587
    • /
    • 2022
  • Biphasic solvents are attracting attention as energy-reducing solvents for capturing CO2 from flue gas in combustion process. In this study, considering diethylenetriamine (DETA) and diethylethanolamine (DEEA) mixed solvents, one of the biphasic solvents by blending of two types of amines, the CO2 absorption rates of DETA and DEEA was measured by wetted wall column. The effects of DETA and DEEA concentrations and operating temperature on the overall mass transfer coefficient were investigated. As a result, the overall mass transfer coefficient was proportional to the DETA concentration. However, in the case of the DEEA concentration, the effect was small and when the concentration was exceeded, the overall mass transfer coefficient decreased. The DETA aqueous solution showed little change in the overall mass transfer coefficient with the operating temperature, whereas the DEEA aqueous solution increased the overall mass transfer coefficient with the operating temperature. As a result of obtaining the observed reaction rate constant under the pseudo-first-order reaction assumption, it was found that the observed reaction rate constant in DETA aqueous solution was proportional to the DETA concentration, but DEEA did not fit the pseudo-first-order reaction assumption.

Detection of Wildfire Smoke Plumes Using GEMS Images and Machine Learning (GEMS 영상과 기계학습을 이용한 산불 연기 탐지)

  • Jeong, Yemin;Kim, Seoyeon;Kim, Seung-Yeon;Yu, Jeong-Ah;Lee, Dong-Won;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.967-977
    • /
    • 2022
  • The occurrence and intensity of wildfires are increasing with climate change. Emissions from forest fire smoke are recognized as one of the major causes affecting air quality and the greenhouse effect. The use of satellite product and machine learning is essential for detection of forest fire smoke. Until now, research on forest fire smoke detection has had difficulties due to difficulties in cloud identification and vague standards of boundaries. The purpose of this study is to detect forest fire smoke using Level 1 and Level 2 data of Geostationary Environment Monitoring Spectrometer (GEMS), a Korean environmental satellite sensor, and machine learning. In March 2022, the forest fire in Gangwon-do was selected as a case. Smoke pixel classification modeling was performed by producing wildfire smoke label images and inputting GEMS Level 1 and Level 2 data to the random forest model. In the trained model, the importance of input variables is Aerosol Optical Depth (AOD), 380 nm and 340 nm radiance difference, Ultra-Violet Aerosol Index (UVAI), Visible Aerosol Index (VisAI), Single Scattering Albedo (SSA), formaldehyde (HCHO), nitrogen dioxide (NO2), 380 nm radiance, and 340 nm radiance were shown in that order. In addition, in the estimation of the forest fire smoke probability (0 ≤ p ≤ 1) for 2,704 pixels, Mean Bias Error (MBE) is -0.002, Mean Absolute Error (MAE) is 0.026, Root Mean Square Error (RMSE) is 0.087, and Correlation Coefficient (CC) showed an accuracy of 0.981.

Effect on Nitrous Oxide Emission in Applying Livestock Manure Compost for Strawberry (Fragaria × ananassa Duch.) Cultivation in Plastic Film House (딸기(Fragaria × ananassa Duch.) 시설재배에서 가축분 퇴비 시용이 아산화질소 배출에 미치는 영향)

  • Lee, Chang-Kyu;Moon, Hyung-Cheol;Song, Eun-Ju;Choi, Seon-U;Ko, Do-Young;Chon, Hyong-Gwon;Yun, Seok-In
    • Korean Journal of Organic Agriculture
    • /
    • v.29 no.1
    • /
    • pp.111-123
    • /
    • 2021
  • This study was conducted to investigate the growth characteristics of strawberries and N2O emission by treating the compost for each type of livestock manure, which was an organic farming material, as a basal fertilization in plastic film house. Livestock manure compost, which made from cattle manure, swine manure, and poultry manure as raw materials, were applied to this experiment, treated by mixing or single on the basis of nitrogen content with the standard amount of fertilizer for strawberries. Total emission of N2O were 10.7% higher than those in poultry manure compost treatment compared to the inorganic fertilizer treatment, but 16.5~41.9% lower than those in other livestock manure compost treatment. The period of N2O emission mainly was up to the 17th day after fertilizer application, accounting for 70~87% of the total amount of discharge, and 13~30% of the total amount was emitted for 158 days later. N2O emission was decreased significantly NH4+-N content in the soil, and increased NO3--N. As compared with control, the number of leaves, leaf width and crown diameter of livestock manure compost treatments were not significantly different, leaf length of cattle+poultry, cattle+ swine, swine+poultry treatment higher, and SPAD (soil plant analysis development) values of cattle+poultry treatment highest. There was no significant difference in weight and sugar content of strawberry fruits among treatments.

Suppression of Powdery Mildew and Two-Spotted Spider Mite by UV-B Radiation and Mulching Type of Strawberry Cultivation in the Greenhouse (딸기 시설재배에서 UV-B 램프와 멀칭 종류에 따른 흰가루병과 점박이응애 억제)

  • Nam, Myeong Hyeon;Kim, Hyun Sook;Lee, InHa;Seo, Jeong Hak;Lee, Byung Joo
    • Research in Plant Disease
    • /
    • v.28 no.2
    • /
    • pp.61-68
    • /
    • 2022
  • Powdery mildew and two-spotted spider mite are detrimental to strawberry plants and are controlled with traditional pesticides. To accommodate consumer demand, eco-friendly methods of pest control are required. Strawberries were cultivated (in soil and in a hydroponic system) for two years, and ultraviolet B (UV-B) irradiation was used as an alternative pest control during the harvesting season. Three varieties were grown (Seolhyang, Kingsberry, and Durihyang), and four UV-B lamp/mulch (black, green, and light reflection sheet [LRS]) combinations were used during harvesting: UV-B+black or green mulch, UV-B+black or green+LRS, no UV-B+black or green, and no UV-B+black or green+LRS. In all varieties, powdery mildew was 65% more controlled when UV-B irradiation was used. The adult two-spotted spider mite density was lowest in the UV-B lamp+black or green+LRS treatments. Therefore, UV-B irradiation during the strawberry harvesting season could effectively control powdery mildew and two-spotted spider mite with little side effect on the plants.

Cut Flower Yields and Qualities of Rosa hybrid Affected by Night Cooling in High Temperature Season (고온기 야간 냉방이 절화 장미 수량 및 품질에 미치는 영향)

  • Se Jin Kim;Won Hee Kim;Young Ran Lee;Hyun Hwan Jung
    • Journal of Bio-Environment Control
    • /
    • v.32 no.1
    • /
    • pp.15-22
    • /
    • 2023
  • Roses are one of the most produced flower species in the world, and cut roses are produced in the greenhouses all year round. Recently, due to the increase in the temperature in the greenhouses in summer, the quality of cut roses is seriously deteriorated, such as shortening the stem length. This study was conducted to investigate the effects of the growing seasons on the qualities of cut roses and also to test the effect of cooling at night in high temperature season on the cut flower qualities of roses. Comparing the qualities and yields of cut roses for each season, the major cut flower qualities such as flower stem length, stem diameter and fresh weight were statistically significantly decreased in roses ('Pink Beauty' and 'Pink Shine') produced in summer. The yields didn't show a statistically significant difference in both cultivars. Investigating the cut flower qualities, the flower stem length increased by 15% for 'Pink Beauty', 11% for 'Ararat', and 12% for 'Pink Shine' when treated with cooling at night in warm season than the untreated control. In addition, when treated with cooling at night in warm season, the fresh weight of all three cultivars increased by 20-30% statistically significantly than conventionally cultivated control. It is expected that cooling at night in warm season will be helpful to improve the cut flower quality deterioration in summer.