• Title/Summary/Keyword: green-house gas

Search Result 270, Processing Time 0.023 seconds

JAXA'S EARTH OBSERVING PROGRAM

  • Shimoda, Haruhisa
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.7-10
    • /
    • 2006
  • Four programs, i.e. TRMM, ADEOS2, ASTER, and ALOS are going on in Japanese Earth Observation programs. TRMM and ASTER are operating well, and TRMM operation will be continued to 2009. ADEOS2 was failed, but AMSR-E on Aqua is operating. ALOS (Advanced Land Observing Satellite) was successfully launched on $24^{th}$ Jan. 2006. ALOS carries three instruments, i.e., PRISM (Panchromatic Remote Sensing Instrument for Stereo Mapping), AVNIR-2 (Advanced Visible and Near Infrared Radiometer), and PALSAR (Phased Array L band Synthetic Aperture Radar). PRISM is a 3 line panchromatic push broom scanner with 2.5m IFOV. AVNIR-2 is a 4 channel multi spectral scanner with 10m IFOV. PALSAR is a full polarimetric active phased array SAR. PALSAR has many observation modes including full polarimetric mode and scan SAR mode. After the unfortunate accident of ADEOS2, JAXA still have plans of Earth observation programs. Next generation satellites will be launched in 2008-2012 timeframe. They are GOSAT (Greenhouse Gas Observation Satellite), GCOM-W and GCOM-C (ADEOS-2 follow on), and GPM (Global Precipitation Mission) core satellite. GOSAT will carry 2 instruments, i.e. a green house gas sensor and a cloud/aerosol imager. The main sensor is a Fourier transform spectrometer (FTS) and covers 0.76 to 15 ${\mu}m$ region with 0.2 to 0.5 $cm^{-1}$ resolution. GPM is a joint project with NASA and will carry two instruments. JAXA will develop DPR (Dual frequency Precipitation Radar) which is a follow on of PR on TRMM. Another project is EarthCare. It is a joint project with ESA and JAXA is going to provide CPR (Cloud Profiling Radar). Discussions on future Earth Observation programs have been started including discussions on ALOS F/O.

  • PDF

Separation and Recovery of F-gases (불화 온실 가스 저감 및 분리회수 기술의 연구개발 동향)

  • Nam, Seung-Eun;Park, Ahrumi;Park, You-In
    • Membrane Journal
    • /
    • v.23 no.3
    • /
    • pp.189-203
    • /
    • 2013
  • F-gases, gases containing fluorine such as perfluorocarbons (PFCs), sulfurhexafluoride ($SF_6$), nitrogen trifluoride ($NF_3$) are known to have green house effects. Although the net emission rates of gases containing fluorine are much lower than those of $CO_2$, their contribution to global warming cannot be ignored because of their extremely high global warming potential (GWP). F-gases mainly have been used for a variaty of applications in the semiconductor/LCD processes and in the electric power distribution industry of the national key industry. One of practical solutions of controlling the emission rates of F-gases is to reuse by separation and recovery of F-gases of low concentration from the gases mixtures with nitrogen or air. This work investigates some methods for F-gases recovery and separation around the membrane-based process.

Emission Characteristics of Vehicles in CVS-75 Mode Under Various Conditions of Driving Distance, Driving Pattern, and Engine Pre-Heating (CVS-75모드에서 차량의 주행거리, 주행패턴 및 엔진 예열상태에 따른 배출가스 특성)

  • Eom, Myung-Do;Baik, Doo-Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.503-508
    • /
    • 2012
  • Recently green house gas emission problem has been issued because $CO_2$ emission is known to cause global warming. Hence, introduces more stringent emission and fuel economy requirements in various countries, including Korea. In this research, $CO_2$ emission factor characteristics of in-use cars, which are the most dominant vehicle type in Korea, were studied, and 129 gasoline vehicles, 100 diesel vehicles, and 34 LPG vehicles were tested on a chassis dynamometer. In the tests, CO and $CO_2$ emissions as well as fuel reduction rates weremeasured. The tests were conducted in the CVS-75 mode, which has been considered for developing emission factors for regulating emissions from light-duty vehicles in Korea. Through experiments, correlations among displacement, fuel consumption efficiency, fuel type, mileage, driving pattern, and $CO_2$ emission were investigated.

A Study on Investigation and Analysis of Photovoltaic Facilities for Building -Application in Jecheon Area- (건물적용 태양광 발전시설 실태 조사.분석에 관한 연구 - 제천지역을 중심으로 -)

  • Yun, Doo-Young;Kim, Jun-He;Yoo, Dong-Cheol;Lee, Eung-Jik
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.354-359
    • /
    • 2012
  • With the long-term use of fossil fuel, the whole world is suffering from serious abnormal changes in weather caused by global warming. For this reason, many countries are reducing greenhouse gas emissions out of obligation and the allowable emissions are assigned to each country. Korea is also putting much effort into reducing greenhouse gas emissions by 30 percent against BAU(Business As Usual) by 2020, and is pushing ahead with several projects such as 'Million Green Home' and 'Hatsal Gaduk Home' to expand the use of new renewable energy in house as part of its policy. This study was designed to come up with improvements and help to expand photovoltaic facilities, by investigating and analyzing the current state of photovoltaic facilities in the country and problems in installing them through an in-site reconnaissance and a survey in Jecheon area. As the result, it was found that residents in the area were inadequate to operate and install photovoltaic facilities, lacked awareness of them and felt burdened economically by managing and installing them, although they had a high awareness of solar energy and photovoltaic facilities are constantly increasing with governmental support. In conclusion, it is considered that as improvements, operational effects should be increased through development of techniques, factors to reduce the effects in operating them due to insufficient management and installation should be removed and awareness of residents need to be improved through long-term plans, political support and education of the government.

  • PDF

Aircraft Emission and Fuel Burn Estimation Due to Changes of Payload and Range (비행거리와 적재량 변화에 따른 항공기 온실가스 배출량 및 연료소모량 산정)

  • Joo, Hee-jin;Hwang, Ho-yon;Park, Byung-woon;Lim, Dongwook
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.4
    • /
    • pp.278-287
    • /
    • 2015
  • The potential impact of aircraft emissions on the current and projected climate of our planet is one of the more important environmental issues facing the aviation industry. Increasing concern over the potential negative effects of greenhouse gas emissions has motivated the development of an aircraft emission estimation and prediction system as one of the ways to reduce aircraft emissions and mitigate the impact of aviation on climate. Hence, in this research, using Piano-X software which was developed by Lissys Co., fuel consumption and emissions for 3 types of aircraft were estimated for different design payloads with various flight distances and flight paths. Fuel burns for economy speed, long range cruise speed, maximum range speed were also investigated with various flight distances and altitudes.

Optimal Design of Carbon Dioxide Dry Reformer for Suppressing Coke Formation (코크 생성 억제를 위한 이산화탄소 건식 개질 반응기의 최적 설계)

  • Lee, Jongwon;Han, Myungwan;Kim, Beomsik
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.176-185
    • /
    • 2018
  • As global warming accelerates, greenhouse gas reduction becomes more important. Carbon dioxide dry reforming is a promising green-house gas reduction technology that can obtain CO and $H_2$ which are high value-added materials by utilizing $CO_2$ and $CH_4$ which are greenhouse gases. However, there is a significant coking problem during operation of the dry reforming reactor. Because the carbon dioxide dry reforming is a strong endothermic reaction, the temperature of the reactor drops near the reactor inlet and causes coke formation. To solve this problem, it is important to ensure that the reaction takes place in a temperature range where coke production is minimized. In this study, we proposed a design method that can maintain reaction temperature in the region where the coke is rarely generated by using the new catalyst configuration method. The design method also optimizes the reactor by solving the optimization problem which minimizes the reactor length for a given reaction conversion by using the fuel flow rate, catalyst density, and output temperature by section as optimization variables.

Study on the selection of transport route for import-export container cargo based on the sacrifice model and $CO_2$ emission (희생량 모델과 $CO_2$ 배출량에 기초한 수출입 컨테이너화물의 운송경로 선택에 관한 연구)

  • Kim S. H.;Koh C. D.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.5 no.1
    • /
    • pp.19-29
    • /
    • 2002
  • In this paper, the selection of transport route for import-export container cargo based on the sacrifice model and CO₂ emission was investigated. At first, the transportation of import-export container cargo, the transport share of each transport route, the CO₂ gas emission, the sacrifice model and the time value of import-export container cargo were investigated. And next, the selection of transport route based on the sacrifice model was investigated for the transport of import-export container cargo from Seoul to Pusan Port. Finally, the transport route was also selected by using the sacrifice model including the effect of CO₂ emission. The research results show that the transport route selection results of import-export container cargo based on the sacrifice model represents the present status of the transportation of import-export container cargo very well. And also the research results show that the reduction of transport time was very effective to increase the share of coastal transportation.

  • PDF

Instantaneous GHG Emission Estimation Method Considering Vehicle Characteristics in Korea (국내 차량의 동적 주행 특성을 반영한 미시적 온실가스 배출량 산정방법론)

  • Hu, Hyejung;Yoon, Chunjoo;Lee, Taewoo;Yang, Inchul;Sung, Junggon
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.6
    • /
    • pp.90-105
    • /
    • 2013
  • There are lots of variations on speed, acceleration and engine power during vehicle driving. It is well known that Green House Gas emissions by these dynamic driving properties are not precisely estimated by the average speed based emission estimation model which has been currently used in Korea. MOVES are selected as an appropriate transferable model among Micro-level emission estimation models. Based on MOVES, a novel emission estimation model can be used in Korea is developed. In this model, MOVES concept of emission estimation method and the MOVES method of estimating the Micro-level emission rate map is adopted. The results from the proposed model were compared with those from the average speed based emission model. The comparison results show the estimated base emission maps are good to be applied in Korea, but needed to be adjusted to consider the vehicle size differences between the two countries. Therefore, the factors for calibrating vehicle size difference were calculated and applied to acquired the micro-level emission maps for the Korean standard vehicle types.

Study on the Separation of N2/SF6 Mixture Gas Using Polyimide Hollow Fiber Membrane (폴리이미드 중공사 막을 이용한 N2/SF6 혼합기체 분리에 관한 연구)

  • Kim, Dae-Hoon;Kim, Guang-Lim;Jo, Hang-Dae;Park, Jong-Soo;Lee, Hyung-Keun
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.660-667
    • /
    • 2010
  • In this research polyimide, Matrimid 5218, hollow fiber membrane was used to recover sulfur hexafluoride($SF_6$) which is one of the six greenhouse gases from $N_2/SF_6$ mixture gas. Fibers were spun from using dry-wet phase inversion method. The module was manufactured by fabricating fibers after surface coating with silicone elastomer. The scanning electron microscopy(SEM) studies showed that the produced fibers typically had an asymmetric structure; a dense top layer supported by a sponge-like substructure. The developed module had a permeance of 0.78-1.36 GPU for $N_2$ with $N_2/SF_6$ selectivity of 2.44-5.08 at various pressure and temperature. For recovery of $SF_6$, a membrane module and 10 vol.% $SF_6$ from $N_2/SF_6$ mixture gas was used. The effects of various operating condition such as pressure, temperature, and retentate side flow rate were tested. When pressure and temperature were increased and retentate flow rate was decreased, the $SF_6$ purity in recovered gas was increased up to 37.5 vol.% with decreasing recovery ratio. When retentate flow rate was increased pressure and temperature was decreased, the $SF_6$ recovery ratio in retentate side was increased up to 89% with decreasing the $SF_6$ purity in retentate side.

Patent Trend Analysis of Carbon Capture/Storage/Utilization Technology (이산화탄소 포집/저장/활용 기술 특허 동향 분석)

  • Bae, Junhee;Seo, Hangyeol;Ahn, Eunyoung;Lee, Jaewook
    • Economic and Environmental Geology
    • /
    • v.50 no.5
    • /
    • pp.389-400
    • /
    • 2017
  • In December 2015, 195 nations agreed to cut green house gas emissions in the Paris Climate Convention, and all over the world showed their willingness to participate in greenhouse gas mitigation. Accordingly, various technologies related to greenhouse gas reduction are being considered, among which carbon dioxide capture, storage, utilization (CCUS) technologies are attracting attention as an unique technology capable of directly removing greenhouse gases. However, CCUS technologies are still costly and have low efficiency. It is still more important to analyze the level of CCUS technology before commercialization and to understand trends and to predict future direction of technology. Therefore, this study analyzes the patent trends of CCUS technology and derives implications for future directions. As a result of country analysis, the United States had the highest number of applications, and sectoral analysis shows that 64% of total patents are from capture sector. Companies such as Alstom technology, Toshiba Corp, and Mitsubishi Heavy are focusing on capturing carbon dioxide. In Korea, government research institutes have focused on storage and utilization technologies. In addition, since the late 2000s, patent applications have increased rapidly, and many countries have been interested in the development of the technology and have made efforts to reduce greenhouse gas.