DOI QR코드

DOI QR Code

Optimal Design of Carbon Dioxide Dry Reformer for Suppressing Coke Formation

코크 생성 억제를 위한 이산화탄소 건식 개질 반응기의 최적 설계

  • Lee, Jongwon (Korea Institute of Chemical Technology, CO2 EnergyVector Research Group) ;
  • Han, Myungwan (Chungnam National University, Department of Chemical Engineering & Applied Chemistry) ;
  • Kim, Beomsik (Korea Institute of Chemical Technology, CO2 EnergyVector Research Group)
  • 이종원 (한국화학연구원 CO2 에너지벡터연구그룹) ;
  • 한명완 (충남대학교 응용화학공학과) ;
  • 김범식 (한국화학연구원 CO2 에너지벡터연구그룹)
  • Received : 2017.09.05
  • Accepted : 2017.11.29
  • Published : 2018.04.01

Abstract

As global warming accelerates, greenhouse gas reduction becomes more important. Carbon dioxide dry reforming is a promising green-house gas reduction technology that can obtain CO and $H_2$ which are high value-added materials by utilizing $CO_2$ and $CH_4$ which are greenhouse gases. However, there is a significant coking problem during operation of the dry reforming reactor. Because the carbon dioxide dry reforming is a strong endothermic reaction, the temperature of the reactor drops near the reactor inlet and causes coke formation. To solve this problem, it is important to ensure that the reaction takes place in a temperature range where coke production is minimized. In this study, we proposed a design method that can maintain reaction temperature in the region where the coke is rarely generated by using the new catalyst configuration method. The design method also optimizes the reactor by solving the optimization problem which minimizes the reactor length for a given reaction conversion by using the fuel flow rate, catalyst density, and output temperature by section as optimization variables.

지구 온난화가 가속화됨에 따라 온실가스 감축이 보다 중요해졌다. 이산화탄소 건식 개질은 온실가스인 $CO_2$$CH_4$를 활용하여 부가가치가 높은 물질인 CO와 $H_2$를 얻을 수 있는 유망한 온실가스 감축 기술이다. 그러나 이 반응이 일어나는 반응기의 운전 중에 심각한 코킹 문제가 발생할 수 있다. 이산화탄소 개질반응은 매우 강한 흡열반응이기 때문에 반응기 입구 근처에서 반응 온도가 많이 떨어지면서 코크 생성을 야기시킨다. 이러한 문제를 해결하기 위해서는 코크 생성이 잘 일어나지 않는 온도영역에서 반응이 일어나도록 하는 것이 중요하다. 본 연구에서는 새로운 촉매 배열 방법을 이용하여 반응기 전 구간이 코크 생성이 잘 일어나지 않는 온도 영역 내에서 유지되도록 하는 설계 방법을 제안하였다. 이 설계 방법은 연료 유량, 촉매 밀도, 구간 별 출구 온도를 최적화 변수로 하여 주어진 전환율에 대하여 반응기 길이를 최소화 할 수 있는 최적화 문제를 풀도록 하여 반응기를 최적화한다.

Keywords

References

  1. Markewitz, P., Kuckshinrichs, W., Leitner, W., Linssen, J., Zapp, P., Bongartz, R. and Muller, T. E., "Worldwide Innovations in the Development of Carbon Capture Technologies and the Utilization of $CO_2$," Energy & Environmental Science, 5(6), 7281-7305 (2012). https://doi.org/10.1039/c2ee03403d
  2. Pakhare, D. and Spivey, J., "A Review of Dry ($CO_2$) Reforming of Methane over Noble Metal Catalysts," Chem. SoC. Rev., 43(22), 7813-7837(2014). https://doi.org/10.1039/C3CS60395D
  3. Luyben, W. L., "Design and Control of the Dry Methane Reforming Process," Ind. Eng. Chem. Res., 53, 14423-14439(2014). https://doi.org/10.1021/ie5023942
  4. Kim, J. M., Ryu, J. H., Lee, I. B. and Lee, J. S., "Recycle of Carbon Dioxide Using Dry Reforming of Methane," Korean Chem. Eng. Res., 47, 267-274(2009).
  5. Edwards, J. H. and Maitra, A. M., "The Chemistry of Methane Reforming with Carbon Dioxide and Its Current and Potential Applications," Fuel Process. Technol., 42(2-3), 269-289(1995). https://doi.org/10.1016/0378-3820(94)00105-3
  6. Mun, G. I., Kim, C. H., Choe, J. S., Lee, S. H., Kim, Y. G. and Lee, J. S., "Carbon Dioxide Reforming of Methane over Nickel Based Catalysts I. Comparison with Steam Reforming," Korean Chem. Eng. Res., 35(6), 883-883(1997).
  7. Chubb, T. A., "Characteristics of $CO_2-CH_4$ Reforming Methanation Cycle Relevant to the Solchem ThermoChemical Power System," Solar Energy., 24(4), 341-345(1980). https://doi.org/10.1016/0038-092X(80)90295-9
  8. Moon, K.-I., "Carbon Dioxide Reforming of Methane over Nickel based Catalyst, Department of Chemical Engineering," Pohang University of Science and Technology, Pohang, 111 (1996).
  9. Gadalla, A. M. and Bower, B., "The Role of Catalyst Support on the Activity of Nickel for Reforming Methane with $CO_2$," Chem. Eng. Sci., 43(11), 3049-3062(1988). https://doi.org/10.1016/0009-2509(88)80058-7
  10. Wang, S., Lu, G. Q. and Millar, G. J., "Carbon Dioxide Reforming of Methane to Produce Synthesis Gas over Metal-supported Catalysts: State of the Art," Energy Fuels, 10(4), 896-904(1996). https://doi.org/10.1021/ef950227t
  11. Hwang, S. and Smith, R., "Heterogeneous Catalytic Reactor Design with Optimum Temperature Profile I: Application of Catalyst Dilution and Side-stream Distribution," Chem. Eng. Sci., 59(20), 4229- 4243(2004). https://doi.org/10.1016/j.ces.2004.05.037
  12. Lee, S., Bae, J., Lim, S. and Park, J., "Improved Configuration of Supported Nickel Catalysts in a Steam Reformer for Effective Hydrogen Production from Methane," J. Power Sources, 180(1), 506-515(2008). https://doi.org/10.1016/j.jpowsour.2008.01.081
  13. Luyben, W. L., "Catalyst Dilution to Improve Dynamic Controllability of Cooled Tubular Reactors," Comput. Chem. Eng., 37, 184-190(2012). https://doi.org/10.1016/j.compchemeng.2011.07.017
  14. Nikoo, M. K. and Amin, N. A. S., "Thermodynamic Analysis of Carbon Dioxide Reforming of Methane in view of Solid Carbon Formation," Fuel Process. Technol., 92(3), 678-691(2011). https://doi.org/10.1016/j.fuproc.2010.11.027
  15. Benguerba, Y., Dehimi, L., Virginie, M., Dumas, C. and Ernst, B., "Modelling of Methane Dry Reforming over $Ni/Al_2O_3$ Catalyst in a Fixed-bed Catalytic Reactor," Reac Kinet Mech Cat, 114(1), 109-119(2015). https://doi.org/10.1007/s11144-014-0772-5
  16. Richardson, J. T. and Paripatyadar, S. A., "Carbon Dioxide Reforming of Methane with Supported Rhodium," Appl. Catal., 61(1), 293-309(1990). https://doi.org/10.1016/S0166-9834(00)82152-1