• Title/Summary/Keyword: green gas

Search Result 1,012, Processing Time 0.027 seconds

Minimization of Energy Consumption for Amine Based CO2 Capture Process by Process Modification

  • Sultan, Haider;Bhatti, Umair H.;Cho, Jin Soo;Park, Sung Youl;Baek, Il Hyun;Nam, Sungchan
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.13-18
    • /
    • 2019
  • The high energy penalty in amine-based post-combustion CO2 capture process is hampering its industrial scale application. An advanced process is designed by intensive heat integration within the conventional process to reduce the stripper duty. The study presents the technical feasibility for stripper duty reduction by intensive heat integration in CO2 capture process. A rigorous rate-based model has been used in Aspen Plus® to simulate conventional and advanced process for a 300 MW coal-based power plant. Several design and operational parameters like split ratio, stripper inter-heater location and flowrate were studied to find the optimum values. The results show that advanced configuration with heat integration can reduces the stripper heat by 14%.

A Study on Hybrid DeNOx Process Using Selective Catalytic Reduction and Adsorption (선택적촉매환원과 흡착을 이용한 복합 탈질공정 연구)

  • Moon, Seung-Hyun;Jeon, Dong-Hwan;Park, Sung-Youl
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.12
    • /
    • pp.1329-1336
    • /
    • 2007
  • This study was carried out to develop an efficient process abating high NO concentration. A hybrid process of selective catalytic reduction(SCR) and activated carbon fiber(ACF) adsorption was newly designed and tested. Used ACF in NO adsorption was regenerated by simultaneously applying heat and vacuum. The result of ACF regeneration was for superior in the desorption condition at $140^{\circ}C$ and vacuum 600 mmHg. A commercial catalyst was used at the conditions of reaction temperature at $300^{\circ}C$, $NH_3/NO$ mole ratio = 1.0 for SCR process. NO evolved from ACF regeneration reactor could be removed by SCR reactor up to 98%. But high concentration of NO was exhausted from SCR reactor for one minute when the flue gas of NO 300 ppm and deserted NO from ACF regeneration were simultaneously treated by the same SCR reactor. Therefore, it is necessary to use additional small sized SCR reactor or to increase $NH_3$ concentration for a short time along with NO concentration rather than to mix flue gas with the gas evolving from ACF regeneration at fixed $NH_3$ inlet concentration. The hybrid process of SCR and ACF showed high NO removal efficiency over 80% at any time courses. Through the repeated cycles, stable DeNOx efficiency was maintained, indicating that the hybrid process would be a good countermeasure to the spotaneously high NO concentration instead of increasing the SCR capacity.

A Study on Construction Plan of the Statistics for National Green House Gas Inventories(LULUCF Sector) (국가 온실가스 인벤토리 LULUCF 부문 통계 구축방안에 관한 연구)

  • Yu, Seon Cheol;Ahn, Wook;Ok, Jin A
    • Spatial Information Research
    • /
    • v.23 no.3
    • /
    • pp.67-77
    • /
    • 2015
  • This Study aimed to construction the plan of the statistics for national greenhouse gas inventories of international standards. Currently, the statistics of the greenhouse gas inventories of South Korea, has a problem that is not able to build the changed information. In previous studies, it has been limited to the construction of the information within each category. In order to solve these problems, targeting Gyeonggi province, we analyzed the land use change by utilizing the various information such as satellite images, KLIS, UPIS. As a result, we suggested the following implementation, classification system of LULUCF category, improvement of accuracy by utilizing satellite images of high resolution, additional research for methodology. Based on these contents, we suggested the construction plan of the statistics for national greenhouse gas inventories(LULUCF sector). Frist, it is necessary to construct of land use change informations for the past 20 years, Then, it need to create the matrix of land use change by utilizing satellite images and various land information systems.

A Study on the Cause of Scale Formation in Biogas Plant with Food Wastewater (음식물류 폐수를 이용한 바이오가스 생산시설의 스케일 형성요인에 관한 연구)

  • Bae, Young-Shin;Chun, Seung-Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.9
    • /
    • pp.660-665
    • /
    • 2013
  • To find out the major cause of scale formation in digestion facility, a componential analysis of scale and a digestion experiment for food wastewater were conducted. The analysis indicated that grease in food wastewater was closely connected to the organic component of scale. It is also indicated that grease-removed food wastewater showed 58.9% level compared to unprocessed one in crystal generation quantity in this study. The experiment provided insight that grease is one of the important causes of scale formation. Additionally, pre-removal of grease from food wastewater did not show negative effect on digestion gas production, as 68.7 L-gas/kg-COD for grease-removed food wastewater and 67.7 L-gas/kg-COD for unprocessed one.

Analysis of GHG Reduction Potential on Road Transportation Sector using the LEAP Model - Low Carbon Car Collaboration Fund, Fuel Efficiency, Improving Driving Behavior - (LEAP 모형을 이용한 도로교통부문의 온실가스 감축잠재량 분석 - 저탄소차협력금제도, 연비강화, 운전행태개선을 중심으로 -)

  • Kim, Min wook;Yoon, Young Joong;Han, Jun;Lee, Hwa Soo;Jeon, Eui Chan
    • Journal of Climate Change Research
    • /
    • v.7 no.1
    • /
    • pp.85-93
    • /
    • 2016
  • This study the efficiency of greenhouse gas reduction of 'low carbon car collaboration fund' and its alternative 'control of average fuel efficiency and greenhouse gas', and 'improving driving behavior' were analyzed by using LEAP, long term energy analysis model. Total 4 scenarios were set, baseline scenario, without energy-saving activity, 'low carbon car collaboration fund' scenario, 'fuel efficiency improving scenario', and 'improving driving behavior' scenario. The contents of analysis were forecast of energy demand by scenario and application as well as reduction of greenhouse gas emission volume, and the period taken for analysis was every 1 year during 2015~2030. Baseline scenario, greenhouse gas emission volume in 2015 would be 7,935,697 M/T and 13,081,986 M/T in 2030, increased 64.8%. The analysis result was average annual increase rate of 3.4%. The expected average annual increase rate of other scenarios was, 'low carbon car collaboration fund' scenario 1.7%, 'fuel efficiency improving' scenario 3.0%. and 'improving driving behavior' scenario 3.4%. and these were each 1.7%, 0.3%. 0.3% reduce from baseline scenario. The largest reduction was 'low carbon car collaboration fund' scenario, and there after were 'fuel efficiency improving scenario', and 'improving driving behavior' scenario.

A Study on the Quantitative Risk Assessment of Mobile Hydrogen Refueling Station (이동식수소스테이션 정량적 위험성평가에 관한 연구)

  • KIM, DONG-HWAN;LEE, SU-MIN;JOE, CHOONG-HEE;KANG, SEUNG KYU;HUH, YUN-SIL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.6
    • /
    • pp.605-613
    • /
    • 2020
  • In July and October of this year, the government announced the 'Green new deal plan within the Korean new deal policy' and 'Strategies for proliferation of future vehicles and market preoccupation'. And, in response to changes in the global climate agreement, it has decided to expand green mobility such as electric vehicles and hydrogen electric vehicles with the aim of a "net-zero" society. Accordingly, the goal is to build 310 hydrogen refueling stations along with the supply of 60,000 hydrogen vehicles in 2022, and the hydrogen infrastructure is being expanded. however, it is difficult to secure hydrogen infrastructure due to expensive construction costs and difficulty the selection of a site. In Korea, it is possible to build a mobile hydrogen station according to the safety standards covering special case of the Ministry of Industry. Since the mobile hydrogen station can be charged while moving between authorized place, it has the advantage of being able to meet a large number of demands with only one hydrogen refueling station, so it is proposed as a model suitable for the early market of hydrogen infrastructure. This study demonstrates the establishment of a hydrogen refueling station by deriving a virtual accident scenario for leakage and catastrupture for each facility for the risk factors in a mobile hydrogen station, and performing a quantitative risk assessment through the derived scenario. Through the virtual accident scenario, direction of demonstration and implications for the construction of a mobile hydrogen refueling station were derived.

Influence of Operation Conditions on the Performance of PEM Water Electrolysis (운전조건이 PEM 수전해 셀의 성능에 미치는 영향)

  • Sangyup Jang;Jaedong Kim;Jinmo Park;Youngseuk So
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.1
    • /
    • pp.65-72
    • /
    • 2024
  • Green Hydrogen demonstration complex is under conduction in Jeju island which is rich in renewable energy resources and will produces green hydrogen using a water electrolysis systems. In order to check durability of long-term operation, AST(accelerated stress test) was applied and the power pattern based on Jeju Island's wind power was applied. After 800 hours of repeated application of low current and high current, the performance of the PEM water electrolysis cell was reduced by up to 10% and by about 5.5% in operating conditions. As the result of impedance analysis, it can be seen that the electrode polarization resistance greatly increased than ohmic polarization resistance. In addition, when the durability evaluation was conducted by applying the wind power pattern of Jeju Island, the performance of the PEM water electrolysis cell showed up to 1.6% and a decrease of less than 1% in operating conditions. As a result of the impedance, it can be seen that the change of ohmic resistance and electrode polarization resistance is small.

Trends on the Research for Alternatives of $SF_6$ Gas ($SF_6$ 대체가스 연구동향)

  • Rhie, Dong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1403-1406
    • /
    • 2002
  • Environmental impact of human activities has become a great concern in most of the countries world-wide, and for years. It has recently focused on potential climate changes due to the increase of green house gases content in the atmosphere. One of these gases is $SF_6$, which is an essential material in electrical applications having excellent dielectric and arc-quenching properties. Though the actual contribution of $SF_6$ to global warming is negligible at present, the control of $SF_6$ emissions seems to be nevertheless imperative. Actually, it is listed in the Kyoto protocol that emissions should not only be duly reported but also the electrical industry which is now the major user of this gas must be able to show that it is possible to use this gas and at the same time preserve the environment. For the development of environmentally-benign electric power equipment and systems, novel gases or gas mixtures are strongly required as the alternatives of $SF_6$ gas. Until now, most research work is focused on the $SF_6/N_2$ mixed gas which is suitable for application in the electrical apparatus with slightly non-uniform fields. Recently, $SF_6/CO_2$ mixed gas also is expected to be promising as a $SF_6$ alternative, especially in highly non-uniform fields and in a gas-impregnated film insulation system. Including these results, the author reviews the research trend or reducing the environmental impact of $SF_6$ gas in this paper.

  • PDF

Effect of Carbonization Conditions on Gas Permeation of Methyl Imide Based Carbon Molecular Sieve Hollow Fiber Membranes (탄화조건이 메틸이미드계 탄소 분자체 중공사 분리막의 기체 투과특성에 미치는 영향 연구)

  • Seong, Ki Hyeok;Song, Ju Sub;Koh, Hyung Chul;Ha, Seong Yong;Han, Moon Hee;Cho, Churl Hee
    • Membrane Journal
    • /
    • v.23 no.5
    • /
    • pp.332-342
    • /
    • 2013
  • In the present study, carbon molecular sieve (CMS) hollow fiber membranes were prepared by carbonizing a methyl imide hollow fiber precursor, which was spun by non-solvent induced phase separation process. And effects of carbonization parameters such as pre-oxidation, pyrolysis, and post-oxidation on the gas permeation were systematically investigated. CMS membrane having the highest gas flux was obtained by carbonizing the precursor through a combined process of air pre-oxidation at $250^{\circ}C$ for 2h, nitrogen pyrolysis at $550^{\circ}C$ for 2h, and oxygen post-oxidation at $250^{\circ}C$ for 2h. The optimized membrane showed a considerable gas permeance : the $H_2$, He, $CO_2$ permeances were 69.72, 35.61, 31.01 GPU, respectively, and the $O_2$ and $N_2$ permeances were ignorable. Therefore, it was clear that the prepared CMS hollow fiber membrane was a promising membrane for recovering small gases such as hydrogen and hellium and carbon dioxide.

Changes in Mineral and Pectic Substances of Korean Mature-Green Mume (Prunus mume Sieb. et Zucc) Fruits Packaged in Plastic Films with Gas Absorbents during Storage (가스 제거제 첨가에 따른 필름 포장 청매실의 저장 중 무기질 및 펙틴 성분 변화)

  • Cha, Hwan-Soo;Hong, Seok-In;Chung, Myong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.149-154
    • /
    • 2003
  • Changes in mineral (Ca, Mg) contents and pectic substances of mature-green 'Nanko' Mume fruits hermetically packaged in 0.03 mm low density polyethylene (LDPE) films with and without gas absorbents were examined during storage at $25^{\circ}C$ for 10 days. Each packaging contained 10 g $Ca(OH)_2$ as a carbon dioxide scavenger, 30 g $KMnO_4$ as an ethylene scrubber or their mixture. In the presence of the ethylene scrubber, losses in mineral contents of alcohol insoluble solids and water soluble pectin were remarkably suppressed, whereas no significant difference was observed in the Ca content between the fresh fruit and those stored for 10 days. Fruits packaged with the ethylene absorbent retained higher amount of pectic substances than those with other packaging treatments. Degradation of the pectic substances into small molecules was also noticeably reduced when the ethylene scrubber was used. Overall results showed that the combination of the gas permeable film and the ethylene absorbent could be applied to mature-green Mume fruits as an effective packaging method to retard the texture softening during storage at the ambient temperature.