DOI QR코드

DOI QR Code

A Study on the Cause of Scale Formation in Biogas Plant with Food Wastewater

음식물류 폐수를 이용한 바이오가스 생산시설의 스케일 형성요인에 관한 연구

  • Bae, Young-Shin (Green Tech. Research Center, SUDOKWON Landfill Site Management Corp.) ;
  • Chun, Seung-Kyu (Green Tech. Research Center, SUDOKWON Landfill Site Management Corp.)
  • 배영신 (수도권매립지관리공사 녹색기술연구센터) ;
  • 천승규 (수도권매립지관리공사 녹색기술연구센터)
  • Received : 2013.09.12
  • Accepted : 2013.09.25
  • Published : 2013.09.30

Abstract

To find out the major cause of scale formation in digestion facility, a componential analysis of scale and a digestion experiment for food wastewater were conducted. The analysis indicated that grease in food wastewater was closely connected to the organic component of scale. It is also indicated that grease-removed food wastewater showed 58.9% level compared to unprocessed one in crystal generation quantity in this study. The experiment provided insight that grease is one of the important causes of scale formation. Additionally, pre-removal of grease from food wastewater did not show negative effect on digestion gas production, as 68.7 L-gas/kg-COD for grease-removed food wastewater and 67.7 L-gas/kg-COD for unprocessed one.

소화설비내 스케일 형성의 주요 원인을 파악하기 위하여 스케일 성분분석 및 음식물류 폐수에 대한 혐기소화 실험을 하였다. 성분분석결과, 음식물류 폐수 중 유분이 스케일의 유기성분과 밀접한 연관이 있었다. 또한, 소화실험시 소화조내 결정체의 발생량은 음식물류 폐수중 유분을 사전에 제거한 경우가 제거하지 않은 원수를 소화한 경우의 58.9% 수준으로 나타나 유분이 스케일 형성의 중요한 요인임을 알 수 있었다. 아울러, 유분을 제거한 음식물류 폐수는 68.7 L-gas/kg-COD 그리고 음식물류 폐수 원수는 67.7 L-gas/kg-COD로서 유분의 사전제거가 소화가스 생산에 부정적 영향을 주지 않았다.

Keywords

References

  1. Ministry of Knowledge Economy, "A Development of the High Efficiency Thermophilic Anaerobic Digestion System for the Treatment of Garbage Leachates in Combination with Organic Wastes," pp. 59-64(2008).
  2. SUDOKWON Landfill Site Management Corp., "Research on the advanced treatment method for nitrogen by utilizing organic waste liquor," pp. 68-71, 97-115(2007).
  3. Ministry of Environment, "Comprehensive plan for food wastewater treatment on land and energy yield [2008-2012]," (2007).
  4. SUDOKWON Landfill Site Management Corp., "Evaluation for pilot scale two-phase anaerobic digestion with ultra fil tration for food wastewater," Green Tech. Research Center 2008 Research Report, 5, 88-101(2009).
  5. Mohajit, X., Bhattarai, K. K., Taiganides, E. P. and Yap, B. C., "Struvite deposits in pipes and aerators," Biol. Wastes, 30, 133-147(1989). https://doi.org/10.1016/0269-7483(89)90067-0
  6. Ben Omar, N., Entrena, M. and Gonzales-Munoz, M. T., "Effects of pH and phosphate on the production of struvite by Myxococcus xanthus," Geomicrobiol. J., 12, 81-90(1994). https://doi.org/10.1080/01490459409377974
  7. Kim, J. H., "Treatment of Semiconductor Wastewater using Struvite Crystalization and Analysis of Influencing Factors," Chungbuk National University, Korea, doctorate thesis, p. 8(2009).
  8. Borgerding, J., "Phosphate deposits in digestion systems," J. Mater Pollut. Control Fed., 44(5), 813-819(1972).
  9. Snoeyink, V. L and Jenkins, D., Water chemistry, John Wiley and Sons, New York, USA.(1980).
  10. Doyle, J. D., Oldering, K., Churchley J. and Parasons, S. A., "Struvite formation and the fouling propensity of different materials," Water Res., 36, 3971-3978(2002). https://doi.org/10.1016/S0043-1354(02)00127-6
  11. Ohlinger, K. N., Young, T. M. and Schroeder, E. D., "Kinetics effects on preferential struvite accumulation in wastewater," J. Environ. Eng., 125(3), 730-737(1999). https://doi.org/10.1061/(ASCE)0733-9372(1999)125:8(730)
  12. Durrant, A. E., Scrimshaw, M. D., Stratful, I. and Lester, J. N., "Review of the Feasibility of Recovering Phosphate from Wastewater for Use as a Raw Material by the Phosphate Industry," Environ. Technol., 20(7), 749(1999). https://doi.org/10.1080/09593332008616870
  13. Doyle, J., Philp, R., Churchley, J. and Parsons, S. A., "Analysis of struvite precitation in real and synthetic liquors," Process Safety Environ. Protect., 78, 480-488(2000). https://doi.org/10.1205/095758200531023
  14. Wang, J., Burken, J. G., Zhang, X., "Effect of seeding materials and mixing strength on struvite precipitation," Water Environ. Res. : A Res. Publicat. Water Environ. Fed., 78(2), 125-132(2006). https://doi.org/10.2175/106143005X89580
  15. Hanaki, K., Matsuo, T. and Nagase, M., "Mechanism of Inhibition Caused by Long-Chain Fatty Acids in Anaerobic Digestion Process," Biotechnol. Bioeng., 23, 1591-1610(1981). https://doi.org/10.1002/bit.260230717
  16. Rinzema, A., Boone, M., Knippenberg, K. V. and Lettinga, G., "Bactericidal Effect of Long Chain Fatty Acids in Anaerobic Digestion," Water Environ. Res., 66, 40-49(1994). https://doi.org/10.2175/WER.66.1.7
  17. Angelidaki, I. and Ahring, B. K., "Effects of free Long- Chain Fatty Acids on Thermophilic Anaerobic Digestion," Appl. Microbiol. Biotechnol., 37, 808-812(1992).
  18. Lettinga, G. and Hulshoff Pol, L. W., "UASB-Process Design for Various Types of Wastewaters," Water Sci. Technol.,, 24(8), 87-107(1991).
  19. Angelidaki, I., L., Ellegaard and Ahring, B. K., "A Comprehensive Model of Anaerobic Bioconversion of Complex Substrates to Biogas," Biotechnol. Bioeng., 63, 363-372(1999). https://doi.org/10.1002/(SICI)1097-0290(19990505)63:3<363::AID-BIT13>3.0.CO;2-Z
  20. Samson, R., B. van den Berg, R. Peters and C. Hade, "Dairy Waste Treatment using Industrial-Scale Fixed-Film and Upflow Sludge Bed Anaerobic Digesters ; Design and Start-up Experience," in 39th Industrial Waste Conference, Purdue University, Butterworth, pp. 235-241(1985).

Cited by

  1. Optimization of thermal-alkaline pre-treatment for anaerobic digestion of flotation scum in food waste leachate using box-behnken design and response surface methodology vol.29, pp.2, 2015, https://doi.org/10.11001/jksww.2015.29.2.183
  2. Effects of Linear Alkylbenzene Sulfonate on Hydrogen Fermentation of Food Waste vol.27, pp.5, 2016, https://doi.org/10.7316/KHNES.2016.27.5.510