DOI QR코드

DOI QR Code

Influence of Operation Conditions on the Performance of PEM Water Electrolysis

운전조건이 PEM 수전해 셀의 성능에 미치는 영향

  • Sangyup Jang (Hydrogen technology research center, Gas research institute, KOGAS) ;
  • Jaedong Kim (Hydrogen and Fuel Cell Division, Bumhan Fuel Cell) ;
  • Jinmo Park (Hydrogen technology research center, Gas research institute, KOGAS) ;
  • Youngseuk So (Hydrogen technology research center, Gas research institute, KOGAS)
  • 장상엽 (한국가스공사 가스연구원 신사업기술연구소) ;
  • 김재동 (범한퓨얼셀 수소연료전지부) ;
  • 박진모 (한국가스공사 가스연구원 신사업기술연구소) ;
  • 소영석 (한국가스공사 가스연구원 신사업기술연구소)
  • Received : 2024.01.15
  • Accepted : 2024.03.26
  • Published : 2024.03.31

Abstract

Green Hydrogen demonstration complex is under conduction in Jeju island which is rich in renewable energy resources and will produces green hydrogen using a water electrolysis systems. In order to check durability of long-term operation, AST(accelerated stress test) was applied and the power pattern based on Jeju Island's wind power was applied. After 800 hours of repeated application of low current and high current, the performance of the PEM water electrolysis cell was reduced by up to 10% and by about 5.5% in operating conditions. As the result of impedance analysis, it can be seen that the electrode polarization resistance greatly increased than ohmic polarization resistance. In addition, when the durability evaluation was conducted by applying the wind power pattern of Jeju Island, the performance of the PEM water electrolysis cell showed up to 1.6% and a decrease of less than 1% in operating conditions. As a result of the impedance, it can be seen that the change of ohmic resistance and electrode polarization resistance is small.

재생에너지 자원이 풍부한 제주도에서 수전해 시스템을 활용하여 그린수소를 생산하는 실증단지를 준비 중이며, 수전해 시스템의 장기 운영시 상황을 검토하기 위하여, PEM 수전해 셀을 가속시험평가 하여 수전해 셀의 내구성을 검토하였고, 제주도 풍력기반의 전력패턴을 적용하였을 때 수전해 셀의 내구성을 검토하였다. 가속시험평가 (저전류-고전류 반복 인가)를 800시간 진행한 후, PEM 수전해 셀의 성능이 최대 10%, 운전조건에서 5.5% 감소되었으며, 임피던스 분석결과 PEM 수전해 셀의 Ohmic 저항보다 전극의 분극저항이 크게 증가한 것을 확인할 수 있다. 그리고 제주도의 풍력패턴을 적용하여 내구성평가를 진행한 경우, PEM 수전해 셀의 성능이 최대 1.6%, 운전 조건에서 1% 미만의 성능감소를 보여주었으며, 임피던스 결과 Ohmic 저항 및 전극의 분극저항의 변화가 작은 것을 알 수 있다.

Keywords

Acknowledgement

본 연구는 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP)의 지원을 받아 그린수소생산 및 저장시스템 기술개발(과제번호: 20208801010010)사업으로 수행되었습니다.

References

  1. Barbir, F., "PEM electrolysis for production of hydrogen from renewable energy sources", Sol Energy, 78(5), 661-669, (2005) .
  2. Kumer, H., Bharti, B., Aslam, S., Sagar, R., et al, "Structural tailoring of molybdenum disulfide by argon plasma for efficient electrocatalysis performance", J.Energy Res, 44(9), 7846-7854, (2020)
  3. Rosen, M., Koohi-Fayegh, S., "The prospects for hydrogen as an energy carriers : an overview of hydrogen and htdrogen energy systems", Energy, Ecol. Environ. 1, 10-29, (2016)
  4. Carmo, M., Fritz, D.I., Stolten, D., "A comprehensive review on PEM water electrolysis", Int. J. Hydrogen Energy, 38(12), 4901-4934, (2013)
  5. Acar, C., Dincer, I. "Comparative assessment of hydrogen production methods from renewable and non- -renewable sources", Int. J. Hydrogen Energy, 39(1), 1-12, (2014)
  6. Ayers, K.E., Capuano, C., Anderson, E.B., "Recent advances in cell cost and efficient for PEM-based water electrolysis, ECS Trans", 41(10), 15-22, (2012)
  7. Ayers, K.E., Capuano, C., Anderson, E.B., "Hydrogen infrastructure challenges and solution", ECS Trans, 41(46), 75-83, (2012)
  8. Ayers, K.E., Capuano, C. Anderson, E.B., et al, "Research Advances towards low cost, high efficiency PEM electrolysis", ECS Trans, 33(1), 3-15, (2010)
  9. Jeju report, Carbon Free Island 2030, (2019)
  10. Korea Power Exchange (KPX), Electric Power Statistics Information System, (2021)
  11. Jeon, W.Y., Kim J.Y., Lee S.W., "Establishing an efficient low-carbon power system by reducing curtailment of renewable energy using ESS, DOI: https://doi.org/10.15531/KSCCR. 2022.13.1.001
  12. Gorre, J., Ruoss, F., Karjunen, H., Schaffert, J., and Tynjala, T., "Cost benefits of optimizing hydrogen storage and methanation capacities for Power-to-Gas plants in dynamic operation", Appl. Energy., 257, 113967, (2020)
  13. Blanco, H., and Faaij, A., "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage", Renew. Sustain. Energy Rev., 81(1), 1049-1086, (2018).
  14. FCH JU, Commercialization of energy storage in Europe, Final report (2015).
  15. Buttler A., Spliethoff, H., "Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-toliquids: A review", Renewable and Sustainable Energy Reviews, 82(3), 2440, (2018).
  16. Park J.H., Kim C.H., Cho H.S., Kim S.K., Cho W.C., "Techno-economic analysis of green hydrogen production system based on renewable energy sources", Trans. of Korean Hydrogen and New Energy Society, 31(4), 337~344 (2020)
  17. Plug-power electrolyzer spec sheet, https://plugpower.com (2022)
  18. Jang, S.Y., Kim, J.D., Kim, D.M., Park, J.M., So, Y.S., "Introduction for foreing PEM systems and it's field test plan linked to renewable energy in Jeju island", KIGAS 27(1), 33-37, (2023)
  19. Lettenmeier, P., Wang, R., Abouatallah, R., Helmly, S., Friedrich K.A., et al, "Durable Membrane Electrode Assemblies for Proton Exchange Membrane Electrolyzer Systems Operating at High Current Densities", Electrochimica Acta, 210, 502-511, (2016)
  20. Tsotridis, G., Pilenga, A., EU harmonised protocols for testing of low temperature water electrolysers, Publications Office of the European Union, 88-89, (2021)
  21. French, S., Fouda-Onana, F., Serre, G., Thoby, D., et al., "IInfluence of the operation mode on PEM water electrolysis degradation", Hydrogen Energy, 44(57), 29889-29898, (2019)