• Title/Summary/Keyword: green crops

Search Result 451, Processing Time 0.023 seconds

Control of Green Peach Aphid (Myzus Persicae) by Combination of Plant Oil Formulations and Low-dosed Imidacloprid

  • Yang, You Ri;Kim, Seon-Hwa;Park, Myung-Ryeol;Kim, Ik-Soo;Kim, In-Seon
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.3
    • /
    • pp.239-246
    • /
    • 2010
  • Aphids are one of the major pests in agricultural crops. A number of synthetic pesticides have been used for control of aphids in agriculture, but increasing public concerns over their adverse effects on the environment have required more environmentally-friendly methods for pest management. In this study, we examined plant oil formulations for the control of green peach aphid (Myzus persicae). Oil formulations were prepared by hydrolyzing the plant oils in ethanolic KOH solution and diluted at the rate of 1:500 for aphid control. The oil formulations showed aphid mortalities ranging from 24.44 to 43.33% in vitro. Significantly increased aphid mortalities were observed by the treatment of oil formulations combined with low-dosed imidacloprid. No significant difference in the aphid mortality was observed between the oil formulations. Mass spectrometry analyses of aphids treated with the low dosedimidacloprid plus the plant oil formulations detected similar concentrations of imidacloprid between the treatments. In field trial bioassays against aphids, significantly decreased aphid population were observed in the pepper plants treated with soybean oil formulation combined with the low-dosed imidacloprid, while aphid population dramatically increased in the pepper plants treated with the low-dosed imidacloprid alone. These results suggested that the plant oil formulations can be used as an environmentally-friendly method for enhancing the insecticidal effectiveness, which may play a role in reducing the use of synthetic pesticide in agriculture.

Effect of Turfgrasses to Prevent Soil Erosion (잔디류가 토양유실 방지에 미치는 영향)

  • Ahn, Byung-Goo;Choi, Joon-Soo
    • Weed & Turfgrass Science
    • /
    • v.2 no.4
    • /
    • pp.381-386
    • /
    • 2013
  • Recent climatic changes by global warming include increased amount and intensity of rainfall. This study was conducted to find out possible roles of turfgrasses to reduce the impact of climatic changes, especially surface soil erosion. Soil erosions by intensive rain were measured after each significant precipitation from the artificially sloped plots of zoysiagrass, cool-season grass mixture of Kentucky bluegrass and perennial ryegrass and other typical korean summer crops. Sodded zoysiagrass resulted in minimal annual soil erosion followed by strip-sodded zoysiagrass and cool-season turfgrass mixture while dry-field rice and bean cultivations eroded the surface soils of 5 to 10 MT $ha^{-1}yr^{-1}$ and pepper cultivation resulted in 7 to 14 MT $ha^{-1}yr^{-1}$ annual loss of surface soil. Annual loss of surface soil from bare land with hand weeding was up to 18 MT $ha^{-1}yr^{-1}$ while greatly reduced soil erosion was observed from weed grown treatment.

Monitoring on Insecticide resistance of major insect pests in paddy field (주요 벼 해충에 대한 약제저항성 모니터링)

  • Lee, Si-Woo;Choi, Byeong-Ryeol;Park, Hyung-Man;Yoo, Jai-Ki
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.4
    • /
    • pp.365-373
    • /
    • 2005
  • This study was carried out for looking into the status of susceptibility of pest insects to insecticides. Each insect Brown planthopper(BPH), Green leaf hopper(GLH), Smaller brown plant hopper(SBPH), Rice water weevil(RWW), were captured at various areas where the host crops were being cultivated and the susceptibility level of each pest insect was investigated. The susceptibility of each pest insect varied by insect species and areas where they were caught. BPHs kept higher level of susceptibility comparing to susceptible reference strain except to most of tested insecticides except imidacloprid (Resistance ratio was 68). The susceptibilities of GLH and SBPH to most of insecticides for their control did not developed markedly since 1976 except fipronil and imidacloprid which is widely used for WRR control. The insecticides used for control of WRR were very effective even at the concentration of one fourth of recommending concentration, but in 2000 suwon strain of WRR showed markedly reduction of susceptibility to carbofuran.

Current status on the development of GM plants based on the published articles and patents in Korea (논문 및 특허의 분석을 통한 국내 GM식물의 개발 현황)

  • Lee, Shin-Woo
    • Journal of Plant Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.394-399
    • /
    • 2010
  • During the last three years (2007 to 2009), 1,212 articles of SCI journals, 451 articles of non-SCI journals, and 348 items of registered patents were reported by the research scientists involved in the BioGreen 21 Project, Rural Development Administration and Crop Functional Genomics Center (CFGC), The 21st century Frontier Program, in Korea. Out of these, the percentages of articles or patents directly related to the development of GM plants were 6.0% (SCI), 10.2% (non-SCI) and 12.6% (patents) from BioGreen 21 Project while 15.7% (SCI), 21.1% (non-SCI) and 81.6% (patents) from CFGC, respectively. It was observed that rice and pepper were major host crops for genetic modification mainly to provide the resistance or tolerance activities against to biotic as well as abiotic stresses. Very low cases were reported for the field test of GM plants regarding to the commercialization (less than 15 articles). These observations indicates that more research grants needs to be invested for the risk assessment of GM plants under early developmental stage to commercialize in Korea.

Impact of Rhizosphere Competence of Biocontrol Agents upon Diseases Suppression and Plant Growth Promotion

  • Park, Chang-Seuk-
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 1994.06a
    • /
    • pp.27-49
    • /
    • 1994
  • Root colonization of biocontrol agents via seed treatment was investigated and a compatible combination, Gliocladium virens G872B and Pseudomonas putida Pf3, in colonizing cucumber rhizosphere was confirmed through the study. Much higher number of fungal and bacterial propagules were detected when two isolates were inoculated together. The presence of Pf3 in root system was greatly helpful to G872B to colonize at root tip. The mechanism of this phenomenon is partially elucidated through the results of in vitro experiments and the observations of scanning electron and fluorescence microscope. Addition of Pf3 cells resulted earlier germination of G872B conidia and increased mycelial growth. And the more number of germinated conidia on seed coat, the more vigorous hypal streching and sporulation on the root surface were observed in coinoculated treatment. The propagules of G872B on the cucumber root when they were challenged against the pathogenic Fusarium oxysporum, were even higher than that of G872B treated alone, and the magnitude of such a difference was getting grater toward the root ip and the population of F. oxysporum on the root was reduced by seed inoculation of G872B. The rhizosphere competence was obviously reflected to disease suppression and plant growth promotion that induced by the given isolate. Green house experiments revealed that the combined treatment provided long-term disease suppression with greater rate and the larger amount of fruit yield than single treatments. Through this study the low temperature growing Pseudomonas fluorescens M45 and MC07 were evaluated to apply them to the winter crops in field or plastic film house. In vitro tests reveal that M45 and MC07 inhibited the mycelial growth of Pythium ultimum, Rhizoctona solani and Phytophthora capsici and enhanced growth of cucumber cotyledon in MS agar. This effect was more pronounced when the bacteria were incubated at 14$^{\circ}C$ than at 27$^{\circ}C$. And disease suppression and plant growth promotion in green house were also superior at low temperature condition. Seed treatment of M45 or soil treatment of MC07 brought successful control of damping-off and enhanced seedling growth of cucumber. The combined treatment of two isolates was more effective than any single treatment.

  • PDF

Studies on the Modeling of Controlled Environment in Leaf Vegetable Crops (엽채류의 환경제어 모델연구 III. 배지와 양액 종류에 따른 식물의 생육변화)

  • 박권우;신영주;원재희;이용범
    • Journal of Bio-Environment Control
    • /
    • v.2 no.1
    • /
    • pp.9-15
    • /
    • 1993
  • Chinese white cabbage, Chinese flat cabbage, lettuce, garland chrysanthemum, and green perilla were grown in nutrient solution culture to investigate the effects of various media and nutrient solutions. The culture media were sand, mixed substrate(peatmoss : sand= 1 : 1), and non-media(deep-flow culture). The nutrient solutions were Cooper's, Hoagland's, and Yamazaki's solution. Plants were grown under different treatments for three weeks. Generally, the growth was greatest in non-media culture and followed mixed substrate culture, and poorest in sand culture. In non-media culture, the growth of Chinese white cabbage, Chinese flat cabbage, lettuce, and green perilla was good in Yamazaki's solution. And regardless of nutrient solution, garland chrysanthemum was good in non-media culture. Relative chlorophyll was not different among the treatments.

  • PDF

Analysis of Crop Damage Caused by Natural Disasters in UAS Monitoring for Smart Farm (스마트 팜을 위한 UAS 모니터링의 자연재해 작물 피해 분석)

  • Kang, Joon Oh;Lee, Yong Chang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.583-589
    • /
    • 2020
  • Recently, the utility of UAS (Unmanned Aerial System) for a smart farm using various sensors and ICT (Information & Communications Technology) is expected. In particular, it has proven its effectiveness as an outdoor crop monitoring method through various indices and is being studied in various fields. This study analyzes damage to crops caused by natural disasters and measures the damage area of rice plants. To this end, data is acquired using BG-NIR (Blue Green_Near Infrared Red) and RGB sensors, and image analysis and NDWI (Normalized Difference Water Index) index performed to review crop damage caused by in the rainy season. Also, point cloud data based on image analysis is generated, and damage is measured by comparing data before and after the typhoon through an inspection map. As a result of the study, the growth and rainy season damage of rice was examined through NDWI index analysis, and the damage area caused by typhoon was measured by analysis of the inspection map.

A Study on Drone Nozzle Design for Greenhouse Shading (온실차광을 위한 드론 전용노즐 설계에 관한 연구)

  • Ungjin Oh;Jin-Taek Lim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.4
    • /
    • pp.249-254
    • /
    • 2023
  • Recently, the distribution of drones is being activated by saving farmers' working time and protecting them from harmful human bodies from pesticides due to the mission of spraying pesticides using drones. It is possible to compensate for various shortcomings derived from the existing pesticide spraying method, wide-area control and helicopter control. Recently, the smart farm expansion policy has actively used it to generate profits for farmers by increasing harvests by monitoring growth information of various crops based on IoT in real time and collecting big data on key variables, and related drone industry technologies are also being developed. In this study, drones were applied to the work of shading greenhouses to secure diversity in agricultural application fields, and basic research on the greenhouse environment was conducted to materialize the technology related to shading. In order to provide high-quality light in consideration of the internal and external environment of the green house, basic research was conducted to enable light-shielding missions using drones through nozzle design for uniform spraying of nozzles of drones, light-transmitting rate analysis of green houses, and light-shielding agent application experiments.

Effects of Green Manure Crops on Growth and Yield of Carrot for Reduction of Continuous Cropping Injury of Carrot through Crop Rotation (당근 연작장해 경감을 위한 녹비작물 재배가 당근 생육 및 수량에 미치는 영향)

  • Kim, Seong-Heon;Seo, Dong-Cheol;Park, Jong-Hwan;Lee, Seong-Tae;Lee, Sang-Won;Kim, Hong-Chul;Cho, Ju-Sik;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.4
    • /
    • pp.279-286
    • /
    • 2013
  • BACKGROUND: Soil incorporation of green manure crop(GMC) is one of the methods for reducing continuous cropping injury and increasing yield of carrot. The purpose of this study was to evaluate the effects of green manure crops on growth and yield of carrot for reduction of continuous cropping injury of carrot through crop rotation. METHODS AND RESULTS: To reduce the injury by continuous cropping system(CCS) of carrot cultivation, GMCs such as crotalaria and sudangrass were applied, which GMC was sowed in latter-June and returned to soil in latter-October. Nutrient contributions of N, $P_2O_5$, $K_2O$, CaO, and MgO in crotalaria were 8.3, 7.5, 4.4, 7.8, and 2.1 kg/10a, respectively. Nutrient contributions of N, $P_2O_5$, $K_2O$, CaO, and MgO in sudangrass were 8.4, 8.6, 26.8, 0.3, and 2.7 kg/10a, respectively. After incorporation of GMCs into soil, bulk density in soil with GMCs was lower than that in soil without GMCs(control). In soil after incorporation of GMCs, pH was not different in all treatment conditions, and ranged from 6.37~6.64. EC in soil after incorporation of GMCs was lower than that in soil without GMCs. The OM, T-N, and avail. $P_2O_5$ contents in soil with GMCs were higher than those in soil without GMCs. The growth and yields were increased as 39.2%(6,226 kg/10a) in the rotational cropping system(RCS) as compared to continuous cropping system(control and without NPK) of 4,473 kg/10a. Crotalaria cultivation were the most effective crop for reducing the injury of continuous cropping of carrot. CONCLUSION(S): This study suggest that the RCS using GMCs showed lower disease outbreak density in soil for carrot cultivation as compared to CCS without GMCs. Especially, the GMCs good effect for reduction of continuous cropping injury of carrot.

Effects of Hydrogen Peroxide on Germination and Early Growth of Sorghum (Sorghum bicolor) (과산화수소 처리가 수수의 발아 및 초기 생장에 미치는 효과)

  • Shim, Doobo;Song, Ki Eun;Park, Chan Young;Jeon, Seung Ho;Hwang, Jung Gyu;Kang, Eun-ju;Kim, Jong Cheol;Shim, Sangin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.2
    • /
    • pp.140-148
    • /
    • 2018
  • As the global warming causing desertification increase, there is growing concern about damage of crops. It was to investigate how the treatment with hydrogen peroxide before leaf development affects the growth and yield of sorghum for minimizing a damage of crops to drought. The germination experiment was conducted at alternating temperature of $25^{\circ}C/20^{\circ}C$(12 hr/12 hr) under water stress condition of 0 ~ -0.20 MPa adjusted with PEG solution containing 0 and 10 mM $H_2O_2$. In order to know the effect of foliar application of hydrogen peroxide on the growth of sorghum, 10 mM hydrogen peroxide was treated to leaves at 3-leaf stage of sorghum growing in greenhouse conditions. Seed germination rate was increased by 20% in hydrogen peroxide treatment as compared to the Control. under water stress conditions (-0.15 ~ -0.20 MPa). The length of seedlings was also on the rise by the hydrogen peroxide treatment. In the greenhouse pot experiment, the morphological characteristics (plant height, stem diameter, leaf length, and leaf number) and physiological characteristics (chlorophyll content, chlorophyll fluorescence (Fv/Fm), stomatal conductance) were higher in the plants treated with hydrogen peroxide under the drought stress condition than those of plants of $H_2O$ treatment. Experiment conducted with the soil moisture gradient system showed that the foliar application of hydrogen peroxide increased photosynthetic ability of sorghum plant with respect to SPAD value and stomatal conductance and rooting capacity (root weight and root length) under drought condition. Generally, hydrogen peroxide treatment in sorghum increased the tolerance to drought stress and maintained better growth due to ameliorating oxidative stress.