• Title/Summary/Keyword: gravity data

Search Result 820, Processing Time 0.028 seconds

A Study on Interpretation of Gravity Data by using Iterative Inversion Methods (반복적(反復的) 역산법(逆算法)에 의(依)한 중력자료(重力資料)의 해석(解析)에 관(關)한 연구(硏究))

  • Roh, Cheol-Hwan;Yang, Sung-Jin;Shin, Chang-Soo
    • Economic and Environmental Geology
    • /
    • v.22 no.3
    • /
    • pp.267-276
    • /
    • 1989
  • This paper presents results of interpretaton of gravity data by iterative nonlinear inversion methods. The gravity data are obtained by a theoretical formula for two-dimensional 2-layer structure. Depths to the basement of the structure are determined from the gravity data by four interative inversion methods. The four inversion methods used here are the Gradient, Gauss-Newton, Newton-Raphson, and Full Newton methods. Inversions are performed by using different initial guesses of depth for the over-determined, even-determined, and under-determined cases. This study shows that the depth can be determined well by all of the methods and most efficiently by the Newton-Raphson method.

  • PDF

Precision Evaluation of Recent Global Geopotential Models based on GNSS/Leveling Data on Unified Control Points

  • Lee, Jisun;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.2
    • /
    • pp.153-163
    • /
    • 2020
  • After launching the GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) which obtains high-frequency gravity signal using a gravity gradiometer, many research institutes are concentrating on the development of GGM (Global Geopotential Model) based on GOCE data and evaluating its precision. The precision of some GGMs was also evaluated in Korea. However, some studies dealt with GGMs constructed based on initial GOCE data or others applied a part of GNSS (Global Navigation Satellite System) / Leveling data on UCPs (Unified Control Points) for the precision evaluation. Now, GGMs which have a higher degree than EGM2008 (Earth Gravitational Model 2008) are available and UCPs were fully established at the end of 2019. Thus, EIGEN-6C4 (European Improved Gravity Field of the Earth by New techniques - 6C4), GECO (GOCE and EGM2008 Combined model), XGM2016 (Experimental Gravity Field Model 2016), SGG-UGM-1, XGM2019e_2159 were collected with EGM2008, and their precisions were assessed based on the GNSS/Leveling data on UCPs. Among GGMs, it was found that XGM2019e_2159 showed the minimum difference compared to a total of 5,313 points of GNSS/Leveling data. It is about a 1.5cm and 0.6cm level of improvement compare to EGM2008 and EIGEN-6C4. Especially, the local biases in the northern part of Gyeonggi-do, Jeju island shown in the EGM2008 was removed, so that both mean and standard deviation of the difference of XGM2019e_2159 to the GNSS/Leveling are homogeneous regardless of region (mountainous or plain area). NGA (National Geospatial-Intelligence Agency) is currently in progress in developing EGM2020 and XGM2019e_2159 is the experimentally published model of EGM2020. Therefore, it is expected that the improved GGM will be available shortly so that it is necessary to verify the precision of new GGMs consistently.

Determination of the Gravity Anomaly in the Ocean Area of Korean Peninsula using Satellite Altimeter Data (위성 고도자료를 이용한 한반도 해상지역에서의 중력이상의 결정)

  • 김광배;최재화;윤홍식;이석배
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.13 no.2
    • /
    • pp.177-185
    • /
    • 1995
  • Gravity anomalies were recovered on a $5'\times{5'}$grid using the sea surface height data obtained from the combination of Geosat, ERS-1, Topex/Poseidon altimeter data around Korean Peninsula bounded by latitude between $30^\circ{N}\;and\;50^\circ{N}$ and longitude $120^\circ{E}\;to\;140^\circ{E.}$ In order to recover the gravity anomalies from SSH(Sea Surface Height), inverse FFT technique was applied. The estimated gravity anomalies were compared with gravity anomalies measured by shipboard around Korean Peninsula. In comparison with the differences of gravity anomaly between measured data and altimeter data, the mean and the standard deviation were found to be -0.51 mGal and 13.48 mGal, respectively. In case of comparison between the measured data and the OSU91A geopotential model, the mean and the standard deviation were found to be 11.93 mGal and 19.19 mGal, respectively. The comparison of gravity anomalies obtained from the OSU91A geopotential model and the altimeter data was carried out. The results were mean of 5.30 meal and standard deviation of 19.62 mGal. From the results, we could be concluded that the gravity anomalies computed from the altimeter data is used to the geoid computation instead of the measured data.

  • PDF

A Study on Interpretation of Gravity Data on Two-Dimensional Geologic Structures by Iterative Nonlinear Inverse (반복적 비선형역산에 의한 2차원 지질구조의 중력자료 해석 연구)

  • Ko, Chin-Surk;Yang, Seung-Jin
    • Economic and Environmental Geology
    • /
    • v.27 no.5
    • /
    • pp.479-489
    • /
    • 1994
  • In this paper, the iterative least-squares inversion method is used to determine shapes and density contrasts of 2-D structures from the gravity data. The 2-D structures are represented by their cross-sections of N-sided polygons with density contrasts which are constant or varying with depth. Gravity data are calculated by theoretical formulas for the above structure models. The data are considered as observed ones and used for inversions. The inversions are performed by the following processes: I) polygon's vertices and density contrast are initially assumed, 2) gravity are calculated for the assumed model and error between the true (observed) and calculated gravity are determined, 3) new vertices and density contrast are determined from the error by using the damped least-squares inversion method, and 4) final model is determined when the error is very small. Results of this study show that the shape and density contrast of each model are accurately determined when the density contrast is constant or vertical density gradient is known. In case where the density gradient is unknown, the inversion gives incorrect results. But the shape and density gradient of the model are determined when the surface density contrast is known.

  • PDF

Study on the aquisition and processing of the shipborne gravity data from the southern area of Yellow sea (서해남부에서의 선상중력 자료 획득 및 처리에 관한 고찰)

  • Choi, Kwang-Sun;Ok, Soo-Suk;Suh, Man-Cheol;Choi, Young-Sub;Kim, Baek-Soo
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.4
    • /
    • pp.291-310
    • /
    • 2000
  • In this study, a series of data processing methods to calculate gravity anomaly from observed marine gravity data by NORI(National Oceanic Research Institute) using RV 'Hayang2000' in 1999 at southern part of the yellow sea were developed. As a results, the RMS difference of Free air anomaly among 264 crossover points is 0.436 mGal. The shipborne gravity data by NORI using RV 'Haeyang2000' will be very useful for gravitational research in and around Korean peninsula.

  • PDF

Precise Geoid Model for Korea from Gravity and GPS Data

  • Choi, Kwang-Sun;Won, Ji-Hoon;Shin, Young-Hong
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.3
    • /
    • pp.181-188
    • /
    • 2006
  • The data, methodology, and the resulting accurate gravimetric geoid model for the Korean Peninsula (latitude from 32˚ N to 40˚ N and longitude from 124˚ E to 131˚ E) are presented in this study. The types of used data were a high degree geopotential model (the EGM96 spherical harmonic coefficient set), a set of 12,615 land gravity observations, 1,056,075 shipborne gravity observations, and KMS2002 gravity anomalies from satellite altimetry. The remove-restore technique was successfully applied to combining the above mentioned data sets using up to degree and order 112 of the EGM96 coefficient. The residual geoid was calculated with residual Free-Air anomaly values using the spherical Stokes' formula with a 37-km integration cap radius. The geoid model was referred to WGS84 geodetic system and was tested using a set of GPS/levelling geoid undulations. The absolute accuracy is 0.132 m and some improvement compared to the PNU95 geoid model was found.

  • PDF

Subsurface Structure of the Yeongdong Basin by Analyzing Aeromagnetic and Gravity Data

  • Kim, Kyung-Jin;Kwon, Byung-Doo
    • Journal of the Korean earth science society
    • /
    • v.23 no.1
    • /
    • pp.87-96
    • /
    • 2002
  • Aeromagnetic and gravity data were analyzed to delineate the subsurface structure of the Yeongdong basin and its related fault movement in the Okcheon fold belt. The aeromagnetic data of the total intensity (KIGAM, 1983) were reduced to the pole and three dimensional inverse modeling, which considers topography of the survey area in the modeling process, were carried out. The apparent susceptibility map obtained by three dimensional magnetic inversion, as well as the observed aeromagnetic anomaly itself, show clearly the gross structural trend of the Yeongdong basin in the direction on between $N30^{\circ}E$ and $N45^{\circ}E$. Gravity survey was carried out along the profile, of which the length is about 18.2 km across the basin. Maximum relative Bouguer anomaly is about 7 mgals. Both forward and inverse modeling were also carried out for gravity analysis. The magnetic and gravity results show that the Yeongdong basin is developed by the force which had created the NE-SW trending the magnetic anomalies. The susceptibility contrast around Yeongdong fault is apparent, and the southeastern boundary of the basin is clearly defined. The basement depth of the basin appears to be about 1.1 km beneath the sea level, and the width of the basin is estimated to be 7 km based on the simultaneous analysis of gravity and magnetic profiles. There exists an unconformity between the sedimentary rocks and the gneiss at the southeastern boundary, which is the Yeongdong fault, and granodiorite is intruded at the northwestern boundary of the basin. Our results of gravity and magnetic data analysis support that the Yeongdong basin is a pull-apart basin formed by the left-stepping sinistral strike-slip fault, which formed the Okcheon fold belt.

Determination of complementary surveying area for precise geoid development in Korea (정밀지오이드 구축을 위한 보완측정지역 선정)

  • Lee, Bo-Mi;Lee, Ji-Sun;Kwon, Jay-Hyoun
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2009.04a
    • /
    • pp.35-39
    • /
    • 2009
  • The equal distribution of the gravity as well as the topographic data is an essential factor in the precision geoid determination. In this study, the area where needs the supplementary gravity survey is assigned through a simulation to build the 5cm level geoid. Based on the current distribution of the gravity data which results in the 8cm level of the precision over all, we extract the area which shows the errors larger than 30 cm. Then, the area is assumed to be filled with gravity data with 2km interval which is turned out to be successfully improving the overall accuracy up to 5cm. Therefore, it is recommended that the supplementary gravity survey should be conducted in mountainous area such as eastern and mid-northern part of Kangwon-Do to achieve the 5cm accuracy on the geoid.

  • PDF

Tectonic Link Between NE China, Yellow Sea and Korean Peninsula, Revealed by Interpreting CHAMP-GRACE Satellite Gravity Data and Sea-surface Measured Gravity Data (CHAMP-GRACE 인공위성 데이터와 해상 측정 중력 데이터에 나타난 황해안 지역의 남중국과 북중국판의 대륙 충돌대 위치)

  • Choi, Sung-Chan
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.2
    • /
    • pp.89-92
    • /
    • 2005
  • For the understanding the locus of the Quinling-Dabie-Sulu continental collision’s boundary and the underground structure of the sedimentray basin in the Yellow Sea, three dimensional density modelling is carrid out by using gravity dataset (Free Air Anomaly), which is measured by Tamhae 2, GIGAM in a period 2000-2002. The measured gravity anomaly in the investigations area is mainly responsed by depth distribution of the sedimentary basin. After comparing the sea-measured gravity data to CHAMP-GRACE satellite gravity data, I suggested that the high density model bodies extend mainly from the southern part of China to the middle-western part of the Korean Peninsula, which might be emplaced along the continental collision’s boundary. The total volume of very low density bodies modified by modelling might be about 20 000 km3.

  • PDF

Case Study on Absolute Gravity Measurement using FG-5 (FG-5 절대중력계 사례조사 연구)

  • Lee, Young-Jin;Son, Soo-Ik;Lee, Myeong-Jun;Jung, Kwang-Ho
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.197-199
    • /
    • 2010
  • A gravity survey is a base of research earth gravity field determined, perception of the vertical motion, change of Geoid, sea-level changes, climate change etc. Recently, FG-5 was adopted in NGII. NGII has completed 4 points of absolute gravity survey and 1,400 points of relative gravity survey in 2009 to aim to observe 20 points of absolute gravity survey and 6,000 points of gravity control point by 2013. Using results of gravity survey, NGII will provide citizen with data for research about renewal of geoid model and geophysics. This study aims to go over examples of utilization of absolute gravimeter & method of utilization in korea.

  • PDF