• Title/Summary/Keyword: gravitation

Search Result 84, Processing Time 0.019 seconds

Minimization of consumption energy for a manipulator with nonlinear friction in PPT motion

  • Izumi, T.;Takase, K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.95-99
    • /
    • 1994
  • Robot engineering is developed mainly in the field of intelligibility such as a manipulation. Considering the popularization of robots in the future, however, a robot should be studied from a viewpoint of saving energy because a robot is a kind of machine with a energy conversion. This paper deals with minimizing an energy consumption of a manipulator which is driven in a point-to-point control method. When a manipulator carries a heavy payload toward gravitation or the links are de-accelerated for positioning, the motors at joints generate electric energy. Since this energy can be regenerated to the source by using a chopper, the energy consumption of a manipulator is only heat loss by an electric and a frictional resistance of the motors. The minimization of the sum of these losses is reduced Lo a two-points boundary-value problem of an non-linear differential equation. The solutions are obtained by the generalized Newton-Raphson method in this paper. The energy consumption due to the optimum angular velocity patterns of two joints of a two-links manipulator is compared with conventional velocity patterns such as quadratic and trapezoid.

  • PDF

MILGROM’S LAW AND Λ’S SHADOW: HOW MASSIVE GRAVITY CONNECTS GALACTIC AND COSMIC DYNAMICS

  • Trippe, Sascha
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.3
    • /
    • pp.191-194
    • /
    • 2015
  • Massive gravity provides a natural solution for the dark energy problem of cosmology and is also a candidate for resolving the dark matter problem. I demonstrate that, assuming reasonable scaling relations, massive gravity can provide for Milgrom’s law of gravity (or “modified Newtonian dynamics”) which is known to remove the need for particle dark matter from galactic dynamics. Milgrom’s law comes with a characteristic acceleration, Milgrom’s constant, which is observationally constrained to a0 ≈ 1.1 × 10−10 ms−2 . In the derivation presented here, this constant arises naturally from the cosmologically required mass of gravitons like , with Λ, H0, and ΩΛ being the cosmological constant, the Hubble constant, and the third cosmological parameter, respectively. My derivation suggests that massive gravity could be the mechanism behind both, dark matter and dark energy.

Effective Development Direction of the Underground Space in Busan (부산시 지하공간의 효율적 개발 방향)

  • Hwang, Jae-Yun
    • Tunnel and Underground Space
    • /
    • v.23 no.5
    • /
    • pp.347-352
    • /
    • 2013
  • Recently, due to the gravitation of the population and traffic congestion, the land supply tends to be short. Underground space development is considered positively as a countermeasure. This study was to review the basic principles of underground space, to find out problems, and to propose the direction for the effective development of underground space.

THEOREMS ON NULL-PATHS AND REDSHIFT

  • Wanas, M.I.;Morcos, A.B.
    • Journal of The Korean Astronomical Society
    • /
    • v.46 no.3
    • /
    • pp.97-102
    • /
    • 2013
  • In the present work, we prove the validity of two theorems on null-paths in a version of absolute parallelismgeometry. A version of these theorems has been originally established and proved by Kermak, McCrea and Whittaker (KMW) in the context of Riemannian geometry. The importance of such theorems lies in their applications to derive a general formula for the redshift of spectral lines coming from distant objects. The formula derived in the present work can be applied to both cosmological and astrophysical redshifts. It takes into account the shifts resulting from gravitation, different motions of the source of photons, spin of the moving particle (photons) and the direction of the line of sight. It is shown that this formula cannot be derived in the context of Riemannian geometry, but it can be reduced to a formula given by KMW under certain conditions.

A DERIVATION OF MODIFIED NEWTONIAN DYNAMICS

  • Trippe, Sascha
    • Journal of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.93-96
    • /
    • 2013
  • Modified Newtonian Dynamics (MOND) is a possible solution for the missing mass problem in galactic dynamics; its predictions are in good agreement with observations in the limit of weak accelerations. However, MOND does not derive from a physical mechanism and does not make predictions on the transitional regime from Newtonian to modified dynamics; rather, empirical transition functions have to be constructed from the boundary conditions and comparisons with observations. I compare the formalism of classical MOND to the scaling law derived from a toy model of gravity based on virtual massive gravitons (the "graviton picture") which I proposed recently. I conclude that MOND naturally derives from the "graviton picture" at least for the case of non-relativistic, highly symmetric dynamical systems. This suggests that-to first order-the "graviton picture" indeed provides a valid candidate for the physical mechanism behind MOND and gravity on galactic scales in general.

A study on the development of bus transit management system in the medium-sized cities (중소도시 버스 운송관리시스템 개발에 관한 연구)

  • 유병우
    • Korean Management Science Review
    • /
    • v.3
    • /
    • pp.37-57
    • /
    • 1986
  • Due to the gravitation of the population to Metropoleis caused by the radical industrialization and urbanization after the 1960s. most Korean cities not only have shown the deformed urban structure, but also have faced many serious problems in the public transit system. Especially, the medium-sized cities as the center of the local life have been under the low level of public transit service because of their poor transportation facilities and inefficient operations. Under these conditions, this study aims at improving its level and quality in the local midium-sized cities by performing the following; . to suggest the new idea of the public transit policies for the medium-sized cities. . to develop the Bus Transit Management System and its related computer programs. . to apply the design policies and methods to the Suwon life-circle in order to evaluate their performance.

  • PDF

A Study on the Optimal Distance and Heating Energy with relation to Site Planning of Apartment Building (아파트 배치형태에 따른 적정 인동거리와 난방에너지에 대한 연구)

  • Jung, Doo-Woon;Choi, Chang-Ho;Lee, Hyun-Woo
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.4
    • /
    • pp.97-107
    • /
    • 2003
  • Recently, the apartment building has been constructed in large quantities to provide housings due to the gravitation of population towards large cities. However, we're faced with a critical problem of deterioration of our dwelling environment caused by the trend toward high-rise apartment which could be an obstruction in obtaining sufficient sunlight. Therefore, there have been several legislative actions against infringement on the right of sunshine. In the building law, sunshine hours and the minimal separated distance between apartments are regulated as the criteria for the site planning, However, the minimal separated distance was defined without consideration of the parameters like building orientation and thermal effect of the sunshine hours in the site planning for the apartment building. In this study, the sunshine hours and heating energy during the underheated season for various arrangements in site planning are carefully considered and analyzed.

FINDING THE ACCELERATION PARAMETER IN MODIFIED NEWTONIAN DYNAMICS WITH ELLIPTICAL GALAXIES

  • TIAN, YONG;KO, CHUNG-MING
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.381-383
    • /
    • 2015
  • MOdified Newtonian Dynamics (MOND) is an alternative to the dark matter paradigm. MOND asserts that when the magnitude of acceleration is smaller than the acceleration parameter $a_0$, the response of the system to gravity is stronger (larger acceleration) than the one given by Newtonian dynamics. The current value of $a_0$ is obtained mostly by observations of spiral galaxies (rotation curves and the Tully-Fisher relation). We attempt to estimate $a_0$ from the dynamics of elliptical galaxies. We seek elliptical galaxies that act as the lens of gravitational lensing systems and have velocity dispersion data available. We analysed 65 Einstein rings from the Sloan Len ACS survey (SLACS). The mass estimates from gravitation lensing and velocity dispersion agree well with each other, and are consistent with the estimates from population synthesis with a Salpeter IMF. The value of $a_0$ obtained from this analysis agrees with the current value.

EVOLUTIONARY MODELS OF ROTATING DENSE STELLAR SYSTEMS WITH EMBEDDED BLACK HOLES

  • FIESTAS, JOSE A.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.345-347
    • /
    • 2015
  • We present evolutionary models of rotating self-gravitating systems (e.g. globular clusters, galaxy cores). These models are characterized by the presence of an initial axi-symmetry due to rotation. Central black hole seeds are included in our models, and black hole growth due to the consumption of stellar matter is simulated until the central potential dominates the kinematics of the core. Our goal is to study the long-term evolution (Gyr) of relaxed dense stellar systems which deviate from spherical symmetry, and their morphology and final kinematics. With this purpose in mind, we developed a 2D Fokker-Planck analytical code, and confirmed its results using detailed N-Body simulations, applying a high performance code developed for GPU machines. We conclude that the initial rotation significantly modifies the shape and lifetime of these systems, and cannot be neglected in the study of the evolution of globular clusters, and the galaxy itself. Our models give a constraint for the final intermediate black hole masses expected to be present in globular clusters.

DETECTION LEVEL ENHANCEMENTS OF GRAVITATIONAL MICROLENSING EVENTS FROM LIGHT CURVES: THE SIMULATIONS

  • IBRAHIM, ICHSAN;MALASAN, HAKIM L.;DJAMAL, MITRA;KUNJAYA, CHATIEF;JELANI, ANTON TIMUR;PUTRI, GERHANA PUANNANDRA
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.235-236
    • /
    • 2015
  • Microlensing can be seen as a version of strong gravitation lensing where the separation angle of the image formed by light deflection by a massive object is too small to be seen by a ground based optical telescope. As a result, what can be observed is the change in light intensity as function of time; the light curve. Conventionally, the intensity of the source is expressed in magnitudes, which uses a logarithmic function of the apparent flux, known as the Pogson formulae. In this work, we compare the magnitudes from the Pogson formulae with magnitudes from the Asinh formulae (Lupton et al. 1999). We found for small fluxes, Asinh magnitudes give smaller deviations, about 0.01 magnitudes smalller than Pogson magnitudes. This result is expected to give significant improvement in detection level of microlensing light curves.