Browse > Article
http://dx.doi.org/10.5303/JKAS.2015.48.3.191

MILGROM’S LAW AND Λ’S SHADOW: HOW MASSIVE GRAVITY CONNECTS GALACTIC AND COSMIC DYNAMICS  

Trippe, Sascha (Department of Physics and Astronomy, Seoul National University)
Publication Information
Journal of The Korean Astronomical Society / v.48, no.3, 2015 , pp. 191-194 More about this Journal
Abstract
Massive gravity provides a natural solution for the dark energy problem of cosmology and is also a candidate for resolving the dark matter problem. I demonstrate that, assuming reasonable scaling relations, massive gravity can provide for Milgrom’s law of gravity (or “modified Newtonian dynamics”) which is known to remove the need for particle dark matter from galactic dynamics. Milgrom’s law comes with a characteristic acceleration, Milgrom’s constant, which is observationally constrained to a0 ≈ 1.1 × 10−10 ms−2 . In the derivation presented here, this constant arises naturally from the cosmologically required mass of gravitons like , with Λ, H0, and ΩΛ being the cosmological constant, the Hubble constant, and the third cosmological parameter, respectively. My derivation suggests that massive gravity could be the mechanism behind both, dark matter and dark energy.
Keywords
gravitation; cosmology; dark matter; dark energy;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Trippe, S. 2013, Can Massive Gravity Explain the Mass Discrepancy–Acceleration Relation of Disk Galaxies?, JKAS, 46, 133
2 Tasinato, G., Koyama, K., & Niz, G. 2013, Exact Solutions in Massive Gravity, Class. Quantum Grav., 30, 184002   DOI
3 Trippe, S. 2013, A Simplified Treatment of Gravitational Interaction on Galactic Scales, JKAS, 46, 41
4 Trippe, S. 2013, A Derivation of Modified Newtonian Dynamics, JKAS, 46, 93
5 Trippe, S. 2014, The ‘Missing Mass Problem’ in Astronomy and the Need for a Modified Law of Gravity, Z. Naturforsch. A, 69, 173
6 Trippe, S. 2015, The “Graviton Picture”: a Bohr Model for Gravitation on Galactic Scales?, Can. J. Phys., 93, 213   DOI
7 Vainshtein, A. I. 1972, To the Problem of Non-Vanishing Gravitation Mass, Phys. Lett. B, 39, 393
8 van Putten, M. H. P. M. 2014, Galaxy Rotation Curves in de Sitter Space, arXiv:1411.2665
9 van Putten, M. H. P. M. 2015, Accelerated Expansion from Cosmological Holography, MNRAS, 450, L48   DOI
10 Volkov, M. S. 2012, Cosmological Solutions with Massive Gravitons in the Bigravity Theory, J. High Energy Phys., 2012, 35
11 Walker, M. G., & Loeb, A. 2014, Is the Universe Simpler than ΛCDM?, Contemp. Phys., 55, 198   DOI
12 Wu, X., & Kroupa, P. 2015, Galactic Rotation Curves, the Baryon-to-Dark-Halo-Mass Relation and Space-Time Scale Invariance, MNRAS, 446, 330   DOI
13 Xu, D., Sluse, D., Gao, L., et al. 2015, How Well Can Dark-Matter Substructures Account for the Observed Radio Flux-Ratio Anomalies?, MNRAS, 447, 3189   DOI
14 Milgrom, M. 1983, A Modification of the Newtonian Dynamics: Implications for Galaxies, ApJ, 270, 371   DOI
15 McGaugh, S. S. 2005, Balance of Dark and Luminous Mass in Rotating Galaxies, Phys. Rev. Lett., 95, 171302   DOI
16 McGaugh, S. S. 2011, Novel Test of Modified Newtonian Dynamics with Gas Rich Galaxies, Phys. Rev. Lett., 106, 121303   DOI
17 Milgrom, M. 1983, A Modification of the Newtonian Dynamics as a Possible Alternative to the Hidden Mass Hypothesis, ApJ, 270, 365   DOI
18 Milgrom, M. 1983, A Modification of the Newtonian Dynamics: Implications for Galaxy Systems, ApJ, 270, 384   DOI
19 Milgrom, M. 1984, Isothermal Spheres in the Modified Dynamics, ApJ, 287, 571   DOI
20 Milgrom, M. 1994, Modified Dynamics Predictions Agree with Observations of the HI Kinematics in Faint Dwarf Galaxies Contrary to the Conclusions of Lo, Sargent, and Young, ApJ, 429, 540   DOI
21 Rhee, M.-H. 2004, Mass-to-Light Ratio and the Tully- Fisher Relation, JKAS, 37, 91
22 Milgrom, M. 2015, MOND Theory, Can. J. Phys. 93, 107   DOI
23 Milgrom, M., & Sanders, R. H. 2008, Rings and Shells of “Dark Matter” as MOND Artifacts, ApJ, 678, 131   DOI
24 Rhee, M.-H. 2004, On the Physical Basis of the Tully-Fisher Relation, JKAS, 37, 15
25 Sanders, R. H. 1994, A Faber–Jackson Relation for Clusters of Galaxies: Implications for Modified Dynamics, A&A, 284, L31
26 Sanders, R. H. 2010, The Universal Faber–Jackson Relation, MNRAS, 407, 1128   DOI
27 Fierz, M., & Pauli, W. 1939, On Relativistic Wave Equations for Arbitrary Spin in an Electromagnetic Field, Proc. R. Soc. London A, 173, 211   DOI
28 De Felice, A., G¨umr¨ukc¨uoglu, A. E., Lin, C., & Mukohyama, S. 2013, On the Cosmology of Massive Gravity, Class. Quantum Grav., 30, 184004   DOI
29 de Rham, C. 2014, Massive Gravity, Living Rev. Relativ., 17, 7   DOI
30 Famaey, B., & McGaugh, S. S. 2012, Modified Newtonian Dynamics (MOND): Observational Phenomenology and Relativistic Extensions, Living Rev. Relativ., 15, 10   DOI
31 Gentile, G., Famaey, B., & de Blok, W. J. G. 2011, THINGS about MOND, A&A, 527, A76
32 Griffiths, D. 2008, Introduction to Elementary Particles, 2nd edn. (Weinheim: Wiley-VCH)
33 Hinterbichler, K. 2012, Theoretical Aspects of Massive Gravity, Rev. Mod. Phys., 84, 671   DOI
34 McGaugh, S. S. 2004, The Mass Discrepancy–Acceleration Relation: Disk Mass and the Dark Matter Distribution, ApJ, 609, 652   DOI
35 Kroupa, P. 2012, The Dark Matter Crisis: Falsification of the Current Standard Model of Cosmology, PASA, 29, 395   DOI
36 Kroupa, P. 2015, Galaxies as Simple Dynamical Systems: Observational Data Disfavor Dark Matter and Stochastic Star Formation, Can. J. Phys., 93, 169   DOI
37 Lee, J., Kim, S., & Rey, S.-C. 2015, A New Dynamical Mass Estimate for the Virgo Cluster Using the Radial Velocity Profile of the Filament Galaxies, arXiv:1501.07064
38 McGaugh, S. S. 2005, The Baryonic Tully–Fisher Relation of Galaxies with Extended Rotation Curves and the Stellar Mass of Rotating Galaxies, ApJ, 632, 859   DOI
39 Ade, P. A. R., et al. 2014, Planck 2013 Results. XVI. Cosmological Parameters, A&A, 571, A16
40 Avilez-Lopez, A., Padilla, A., Saffin, P. M., & Skordis, C. 2015, The Parameterized Post-Newtonian-Vainshteinian Formalism, arXiv:1501.01985
41 Bahcall, N. A., Ostriker, J. P., Perlmutter, S., & Steinhardt, P. J. 1999, The Cosmic Triangle: Revealing the State of the Universe, Science, 284, 1481   DOI
42 Babichev, E., & Deffay, C. 2013, An Introduction to the Vainshtein Mechanism, Class. Quantum Grav., 30, 184001   DOI
43 Baker, T., Psaltis, D., & Skordis, C. 2015, Linking Tests of Gravity on All Scales: From the Strong-Field Regime to Cosmology, ApJ, 802, 63   DOI
44 Cardone, V. F., Angus, G., Diaferio, A., et al. 2011, The Modified Newtonian Dynamics Fundamental Plane, MNRAS, 412, 2617   DOI
45 Clifton, T., Ferreira, P. G., Padilla, A., & Skordis, C. 2012, Modified Gravity and Cosmology, Phys. Rep., 513, 1   DOI
46 Cardone, V. F., Radicella, N., & Parisi, L. 2012, Constraining Massive Gravity with Recent Cosmological Data, Phys. Rev. D, 85, 124005   DOI
47 Chae, K.-H., & Gong, I.-T. 2015, Testing Modified Newtonian Dynamics through Statistics of Velocity Dispersion Profiles in the Inner Regions of Elliptical Galaxies, arXiv:1505.02936