DOI QR코드

DOI QR Code

A DERIVATION OF MODIFIED NEWTONIAN DYNAMICS

  • Trippe, Sascha (Department of Physics and Astronomy, Seoul National University)
  • Received : 2013.02.14
  • Accepted : 2013.03.29
  • Published : 2013.04.30

Abstract

Modified Newtonian Dynamics (MOND) is a possible solution for the missing mass problem in galactic dynamics; its predictions are in good agreement with observations in the limit of weak accelerations. However, MOND does not derive from a physical mechanism and does not make predictions on the transitional regime from Newtonian to modified dynamics; rather, empirical transition functions have to be constructed from the boundary conditions and comparisons with observations. I compare the formalism of classical MOND to the scaling law derived from a toy model of gravity based on virtual massive gravitons (the "graviton picture") which I proposed recently. I conclude that MOND naturally derives from the "graviton picture" at least for the case of non-relativistic, highly symmetric dynamical systems. This suggests that-to first order-the "graviton picture" indeed provides a valid candidate for the physical mechanism behind MOND and gravity on galactic scales in general.

Keywords

References

  1. Bahcall, N. A., Ostriker, J. P., Perlmutter, S., & Steinhardt, P. J. 1999, The Cosmic Triangle: Revisiting the State of the Universe, Science, 284, 1481 https://doi.org/10.1126/science.284.5419.1481
  2. Bekenstein, J., & Milgrom, M. 1984, Does the Missing Mass Problem Signal the Breakdown of Newtonian Gravity?, ApJ, 286, 7 https://doi.org/10.1086/162570
  3. Bekenstein, J. 2006, The Modified Newtonian Dynamics - MOND and Its Implications for New Physics, Contemp. Phys., 47, 387 https://doi.org/10.1080/00107510701244055
  4. Binney, J., & Tremaine, S. 1987, Galactic Dynamics (Princeton: Princeton University Press)
  5. Einasto, J., Kaasik, A., & Saar, E. 1974, Dynamic Evidence on Massive Coronas of Galaxies, Nature, 250, 309 https://doi.org/10.1038/250309a0
  6. Faber, S. M., & Jackson, R. E. 1976, Velocity Dispersions and Mass-to-Light Ratios for Elliptical Galaxies, ApJ, 204, 668 https://doi.org/10.1086/154215
  7. Famaey, B., & Binney, J. 2005, Modified Newtonian Dynamics in the Milky Way, MNRAS, 363, 603 https://doi.org/10.1111/j.1365-2966.2005.09474.x
  8. Famaey, B., & McGaugh, S. S. 2012, Modified Newtonian Dynamics (MOND): Observational Phenomenology and Relativistic Extensions, Living Rev. Relativity, 15, 10
  9. Ferreira, P. G., & Starkman, G. D. 2009, Einstein's Theory of Gravity and the Problem of Missing Mass, Science, 326, 812 https://doi.org/10.1126/science.1172245
  10. Jee, M. J., Mahdavi, A., Hoekstra, H., et al. 2012, A Study of the Dark Core in A520 with the Hubble Space Tele- scope: The Mystery Deepens, ApJ, 747, 96 https://doi.org/10.1088/0004-637X/747/2/96
  11. Kroupa, P. 2012, The Dark Matter Crisis: Falsification of the Current Standard Model of Cosmology, PASA, 29, 395 https://doi.org/10.1071/AS12005
  12. Lee, J., & Komatsu, E. 2010, Bullet Cluster: a Challenge to ACDM Cosmology, ApJ, 718, 60 https://doi.org/10.1088/0004-637X/718/1/60
  13. McGaugh, S. S. 2004, The Mass Discrepancy - Acceleration Relation: Disk Mass and the Dark Matter Distribution, ApJ, 609, 652 https://doi.org/10.1086/421338
  14. Milgrom, M. 1983, A Modification of the Newtonian Dy- namics as a Possible Alternative to the Hidden Mass Hypothesis, ApJ, 270, 365 https://doi.org/10.1086/161130
  15. Milgrom, M. 1983, A Modification of the Newtonian Dy- namics: Implications for Galaxies, ApJ, 270, 371 https://doi.org/10.1086/161131
  16. Milgrom, M. 1983, A Modification of the Newtonian Dynamics: Implications for Galaxy Systems, ApJ, 270, 384 https://doi.org/10.1086/161132
  17. Ostriker, J. P., & Peebles, P. J. E. 1973, A Numerical Study of the Stability of Flattened Galaxies: Or, Can Cold Galaxies Survive?, ApJ, 186, 467 https://doi.org/10.1086/152513
  18. Rubin, U. C., Ford, W. K. Jr., & Thonnard, N. 1980, Rota- tional Properties of 21 Sc Galaxies with a Large Range of Luminosities and Radii, from NGC4605 (R = 4 kpc) to UGC2885 (R = 122 kpc), ApJ, 238, 471 https://doi.org/10.1086/158003
  19. Sancisi, R. 2004, The Visible Matter - Dark Matter Cou- pling, in: Ryder, S. D., et al. (eds.), Dark Matter in Galaxies, IAU Symposium, 220, 233
  20. Sanders, R. H. 1990, Mass Discrepancies in Galaxies: Dark Matter and Alternatives, A&AR, 2, 1 https://doi.org/10.1007/BF00873540
  21. Sanders, R. H., & McGaugh, S. S. 2002, Modified New- tonian Dynamics as an Alternative to Dark Matter, ARA&A, 40, 263 https://doi.org/10.1146/annurev.astro.40.060401.093923
  22. Trippe, S. 2013, A Simplified Treatment of Gravitational Interaction on Galactic Scales, JKAS, 46, 41
  23. Tully, R. B., & Fisher, J. R. 1977, A New Method of De- termining Distances to Galaxies, A&A, 54, 661
  24. Zwicky, F. 1933, Die Rotverschiebung von Extragalaktis- chen Nebeln, Helv. Phys. Acta, 6, 110

Cited by

  1. Galaxies as simple dynamical systems: observational data disfavor dark matter and stochastic star formation1 vol.93, pp.2, 2015, https://doi.org/10.1139/cjp-2014-0179
  2. The “graviton picture”: a Bohr model for gravitation on galactic scales?1 vol.93, pp.2, 2015, https://doi.org/10.1139/cjp-2014-0158
  3. MOND theory1 vol.93, pp.2, 2015, https://doi.org/10.1139/cjp-2014-0211