• Title/Summary/Keyword: graphite electrode

Search Result 256, Processing Time 0.03 seconds

Electrolyte-concentrations Effects on SEI Formation on Graphite Negative Electrode in EC-based Electrolyte Solutions (흑연전극상의 SEI 형성에 미치는 EC계 전해질 농도의 영향)

  • Choi, Dong-Gui;Jeong, Soon-Ki
    • Proceedings of the KAIS Fall Conference
    • /
    • 2007.11a
    • /
    • pp.356-358
    • /
    • 2007
  • 본 논문에서는 농도가 다른 EC계의 전해질 용액 중에서 흑연의 Cyclic voltammetry(CV)를 측정하였다. CV후 전극표면에 생성된 SEI를 투과형 전자현미경으로 분석한 결과, PC계에서 얻어지는 결과와 유사하게 충 방전 반응 및 생성된 SEI의 성질이 전해질의 농도에 크게 의존하고 있음을 확인하였다.

  • PDF

Assay of Trace Gold Ion in a Skin Cell Using a Stripping Voltammetry

  • Ly, Suw-Young;Lee, Jin-Hui;Yi, Jae-Hun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.15-21
    • /
    • 2011
  • Threelectrodes systems were used in stripping voltammetry (SW) and cyclic voltammetry (CV) instead of the expensive platinum and Ag/AgCl reference electrodes. Moreover, the electrolyte solution was used with deep seawater, which can reduce water pollution, is more eco-friendly, and has a lower cost. The analytical optimum parameters measured via CV and SW and with working ranges were obtained from 10 to 80 ug/L using fluorine immobilized on a graphite pencil electrode (FE). Under the optimum conditions, the analytical detection limit of 6.30 ug/LAu was obtained. The results of the study can be applied to diagnostic assay for natural minerals and human finger tissue.

Influence of carbon black on electrochemical performance of graphene-based electrode for supercapacitor (슈퍼커패시터를 위한 그래핀 기반 전극의 전기화학적 특성에 대한 카본블랙 도입의 효과)

  • Kim, Ki-Seok;Park, Soo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.95.1-95.1
    • /
    • 2011
  • In this work, graphene was prepared by modified Hummers method and prepared graphene was applied to electrode materials for supercapacitor. In addition, to enhance the electrochemical performance of graphene, carbon black was deposited onto graphene via chemical reduction. The effect of the carbon black content incorporated on the electrochemical properties of the graphene-based electrodes was investigated. It was found that nano-scaled carbon black aggregates were deposited and dispersed onto the graphene by the chemical reduction of acid treated carbon black and graphite oxide. From the cyclic voltammograms, carbon black-deposited graphene (CB-GR) showed improved electrochemical performance, i.e., current density, quicker response, and better specific capacitance than that of pristine graphene. This indicates that the carbon black deposited onto graphene served as an conductive materials between graphene layers, leading to reducing the contact resistance of graphene and resulted in the increase of the charge transfer between graphene layers by bridge effect.

  • PDF

Electrochemical Property of Immobilized Spinach Ferredoxin on HOPG Electrode

  • Nam Yun-Suk;Kim, You-Sung;Shin, Woon-Sup;Lee, Won-Hong;Choi, Jeong-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.1043-1046
    • /
    • 2004
  • The stability and electrochemical properties of a self-assembled layer of spinach ferredoxin on a quartz substrate and on a highly oriented pyrolytic graphite electrode were investigated. To fabricate the ferredoxin self-assembly layer, dimyristoylphosphatidylcholine was first deposited onto a substrate for ferredoxin immobilization. Surface analysis of the ferredoxin layer was carried out by atomic force microscopy to verify the ferredoxin immobilization. To verify ferredoxin immobilization on the lipid layer and to confirm the maintenance of redox activity, absorption spectrum measurement was carried out. Finally, cyclic-voltammetry measurements were performed on the ferredoxin layers and the redox potentials were obtained. The redox potential of immobilized ferredoxin had a formal potential value of -540 mV. It is suggested that the redox-potential measurement of self-assembled ferredoxin molecules could be used to construct a biosensor and biodevice.

Diagnosis of Trace Toxic Uranium Ions in Organic Liver Cell

  • Ly, Suw Young;Pack, Eun Chul;Choi, Dal Woong
    • Toxicological Research
    • /
    • v.30 no.2
    • /
    • pp.117-120
    • /
    • 2014
  • Uranium is toxic and radioactive traces of it can be found in natural water and soils. High concentrations of it in biological systems cause genetic disorders and diseases. For the in vivo diagnosis, micro and nano range detection limits are required. Here, an electrochemical assay for trace toxic uranium was searched using stripping voltammetry. Renewable and simplified graphite pencils electrode (PE) was used in a three-electrode cell system. Seawater was used instead of an electrolyte solution. This setup can yield good results and the detection limit was attained to be at $10{\mu}gL^{-1}$. The developed skill can be applied to organic liver cell.

Nano Structured Potentiometric Sensors Based on Polyaniline Conducting Polymer for Determination of Cr (VI)

  • Ali, Mohammad-Khah;Ansari, Reza;Delavar, Ali Fallah;Mosayebzadeh, Zahra
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1247-1252
    • /
    • 2012
  • In this paper, a potentiometric sensor based on polyaniline conducting polymer for potentiometric determination of Cr (VI) ions is reported. Polyaniline was synthesized electrochemically (cyclic voltammetry method) onto a micro pencil graphite electrode (0.7 mm diameter) in the presence of HCl and diphenylcarbazide (termed as (PGE/PAni/DPC). Some initial experiments were performed in order to find out the optimized conditions for preparation of the introduced Cr (VI) sensor electrode. The plot of E vs. log [Cr (VI)], showed a linear response in the range from $1.0{\times}10^{-6}$ to $1.0{\times}10^{-1}$ M. High repeatability with the detection limit of $8.0{\times}10^{-7}$ M was obtained.

Thermally Crosslinked Polyimide Binders for Si-alloy Anodes in Li-ion Batteries

  • Chang, Hyeong-Seok;Ji, Sang-Gu;Rho, Miso;Lee, Byoung-Min;Kim, Sung-Soo;Choi, Jae-Hak
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.339-346
    • /
    • 2022
  • Silicon (Si) has attracted considerable attention due to its high theoretical capacity compared to conventional graphite anode materials. However, Si-based anode materials suffer from rapid capacity loss due to mechanical failure caused by large volume change during cycling. To alleviate this phenomenon, crosslinked polymeric binders with strong interactions are highly desirable to ensure the electrode integrity. In this study, thermally crosslinked polyimide binders were used for Si-alloy anodes in Li-ion batteries. The crosslinked polyimide binder was found to have high adhesion strength, resulting in enhanced electrode integrity during cycling. Therefore, the Si-alloy anodes with crosslinked polyimide binder provide enhanced electrochemical performance, such as Coulombic efficiency, capacity retention, and cycle stability.

Development of Electrode Materials for Li-Ion Batteries and Catalysts for Proton Exchange Membrane Fuel Cells (리튬 이차전지용 전극 및 연료전지 촉매 소재 연구 개발 동향)

  • Yun, Hongkwan;Kim, Dahee;Kim, Chunjoong;Kim, Young-Jin;Min, Ji Ho;Jung, Namgee
    • Ceramist
    • /
    • v.21 no.4
    • /
    • pp.388-405
    • /
    • 2018
  • In this paper, we review about current development of electrode materials for Li-ion batteries and catalysts for fuel cells. We scrutinized various electrode materials for cathode and anode in Li-ion batteries, which include the materials currently being used in the industry and candidates with high energy density. While layered, spinel, olivine, and rock-salt type inorganic electrode materials were introduced as the cathode materials, the Li metal, graphite, Li-alloying metal, and oxide compound have been discussed for the application to the anode materials. In the development of fuel cell catalysts, the catalyst structures classified according to the catalyst composition and surface structure, such as Pt-based metal nanoparticles, non-Pt catalysts, and carbon-based materials, were discussed in detail. Moreover, various support materials used to maximize the active surface area of fuel cell catalysts were explained. New electrode materials and catalysts with both high electrochemical performance and stability can be developed based on the thorough understanding of earlier studied electrode materials and catalysts.

Development of an Integrated Electrode-bipolar Plate Assembly with Reduced Contact Resistance for Vanadium Redox Flow Battery (바나듐 레독스 흐름전지용 접촉저항 감소 일체형 전극-분리판 조립체 개발)

  • Amanpreet Kaur;Jun Woo Lim
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.190-196
    • /
    • 2024
  • The bipolar plate is a crucial element of the vanadium redox flow battery (VRFB) as it serves as both the electrical conduit and the structural support for the cell within the VRFB stack. Although, the graphite material is primarily used for the bipolar plate due to its excellent electrical conductivity, a significant limitation of performance of the VRFB is present due to high interfacial contact resistance (ICR) arises between the electrode and bipolar plate in the cell stack. This study aims to develop an integrated electrode-bipolar plate assembly that will address the limitations of the ICR. The integrated assembly was constructed using a single carbon felt with thermoplastic and thermoset polymers utilizing hot press method. Experimental results verify that the bipolar plate assembly exhibits reduced area specific resistance (ASR) due to the continuous electrical path. Additionally, from the charge/discharge cell test results, the integrated assembly shows improved cell performance. Therefore, the developed integrated electrode-bipolar plate assembly can serve as a substitute for the conventional bipolar plate and electrode assembly.

Investigation of Water Safety in Non-treated Drinking Water with Trace Toxic Metals

  • Ly, Suw Young;Kim, Dae Hong;Lee, Ga Eun
    • Toxicological Research
    • /
    • v.29 no.3
    • /
    • pp.211-215
    • /
    • 2013
  • The trace toxic metal copper was assayed using mercury immobilized on a carbon nanotube electrode (MCW), with a graphite counter and a reference electrode. In this study, a macro-scale convection motor was interfaced with a MCW three-electrode system, in which a handmade MCW was optimized using cyclic- and square-wave stripping voltammetry. An analytical electrolyte for tap water was used instead of an expensive acid or base ionic solution. Under these conditions, optimum parameters were 0.09 V amplitude, 40 Hz frequency, 0.01 V incremental potential, and a 60-s accumulation time. A diagnostic working curve was obtained from 50.0 to 350 ${\mu}g/L$. At a constant Cu(II) concentration of 10.0 ${\mu}g/L$, the statistical relative standard deviation was 1.78% (RSD, n = 15), the analytical accumulation time was only 60 s, and the analytical detection limit approached 4.6 ${\mu}g/L$ (signal/noise = 3). The results were applied to non-treated drinking water. The content of the analyzed copper using 9.0 and 4.0 ${\mu}g/L$ standards were 8.68 ${\mu}g/L$ and 3.96 ${\mu}g/L$; statistical values $R^2$ = 0.9987 and $R^2$ = 0.9534, respectively. This method is applicable to biological diagnostics or food surveys.