Browse > Article
http://dx.doi.org/10.33961/jecst.2021.01018

Thermally Crosslinked Polyimide Binders for Si-alloy Anodes in Li-ion Batteries  

Chang, Hyeong-Seok (Department of Polymer Science and Engineering, Chungnam National University)
Ji, Sang-Gu (Graduate School of Energy Science and Technology, Chungnam National University)
Rho, Miso (Department of Polymer Science and Engineering, Chungnam National University)
Lee, Byoung-Min (Department of Polymer Science and Engineering, Chungnam National University)
Kim, Sung-Soo (Graduate School of Energy Science and Technology, Chungnam National University)
Choi, Jae-Hak (Department of Polymer Science and Engineering, Chungnam National University)
Publication Information
Journal of Electrochemical Science and Technology / v.13, no.3, 2022 , pp. 339-346 More about this Journal
Abstract
Silicon (Si) has attracted considerable attention due to its high theoretical capacity compared to conventional graphite anode materials. However, Si-based anode materials suffer from rapid capacity loss due to mechanical failure caused by large volume change during cycling. To alleviate this phenomenon, crosslinked polymeric binders with strong interactions are highly desirable to ensure the electrode integrity. In this study, thermally crosslinked polyimide binders were used for Si-alloy anodes in Li-ion batteries. The crosslinked polyimide binder was found to have high adhesion strength, resulting in enhanced electrode integrity during cycling. Therefore, the Si-alloy anodes with crosslinked polyimide binder provide enhanced electrochemical performance, such as Coulombic efficiency, capacity retention, and cycle stability.
Keywords
Crosslinked Polyimide Binder; Li-ion Battery; Si-alloy anode;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Q. Liu, S. Li, S. Wang, X. Zhang, Si. Zhou, Y. Bai, J. Zheng and X. Lu, Jung, J. Phys. Chem. Lett., 2018, 9(18), 5567-5573.   DOI
2 J. Song, M. Zhou, R. Yi, T. Xu, M. Grodin, D Tang, Z. Yu, M Regula and D. Wang, Adv. Funct. Mater., 2014, 24(37), 5904-5910.   DOI
3 H. S. Woo, K. I. Park, J. W. Kim, A. Yun, S. H. Nam and B. W. Park, Adv. Mater. Interfaces., 2020, 7(2), 1901475   DOI
4 D. H. Seo, H. Y. Kim and S. S. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 2019, 32(4), 341-348.
5 W. Qiu, C-C. Chen, L. Xu, L. Cui, D. Paul and W. Koros, Macromolecules., 2011, 44(15), 6046-6056.   DOI
6 S. G. Ji, N. Umirov, H. Y. Kim and S. S. Kim, Journal of the Korean Battery Society., 2021, 1(1), 1-5.   DOI
7 G. Eshetu and E. Figgemeier, ChemSusChem., 2019, 12(12), 2515-2539.   DOI
8 A. Gonzalez, N. Yang and R. Liu, J. phys. Chem., 2017, 121(150), 27775-27787.
9 X. Zuo, J. Zhu, P. Muller-Buschbaum and Y. Cheng, Nano Energy., 2017, 31, 113-143.   DOI
10 B. Koo, H. Kim, Y. Cho, K. T. Lee, N.-S. Choi and J. Cho, Angew. Chem. Int. Ed., 2012, 51(35), 8762-8767.   DOI
11 Z. Liu, S. Han, C. Xu, Y. Luo, N. Peng, C. Qin, M. Zhou, W. Wang, L. Chen and S. Okada, RSC Adv., 2016, 6(72), 68371-38378.   DOI
12 D. S. Lee, H. J. Park, A. Goliaszewski, Y. K. Byeun, T. S. Song and U. G. Paik, Ind. Eng. Chem. Res., 2019, 58(19), 8123-8130.   DOI
13 S. H. Lee, J. H. Lee, D. H. Nam, M. S. Cho, J. H. Kim, C. Chanthad and Y. K. Lee, Appl. Mater.Interfaces., 2018, 10(19), 16449-16457.   DOI
14 C. Zhang, B. Cao and P. Li, J. Membr. Sci., 2018, 546, 90-99.   DOI
15 N. Umirov, D-H. Seo, H-Y. Kim and S-S. Kim, ACS Appl. Mater. Interfaces., 2020, 12(15), 17406-17414.
16 Y. J. Lee, B. N. Chae, Y. J. Park, Y. M. Jung and S. W. Lee, J. Mol. Struct., 2020, 1217, 128383.   DOI
17 S. Diaham, M.L. Locatelli, T. Lebey and D. Malec, Thin Soild Films, 2011, 519(6), 1851-1856.   DOI
18 C. Zhang, P. Li and B. Cao, J. Membr. Sci., 2017, 528, 206-216.   DOI