• Title/Summary/Keyword: graph of a matrix

Search Result 203, Processing Time 0.028 seconds

A Study on the Recognition of Hand Vein Pattern using Graph Theory (그래프 이론에 의한 손 정맥 패턴 인식에 관한 연구)

  • Cho, Meen-Hwan
    • Journal of the Korea Computer Industry Society
    • /
    • v.10 no.5
    • /
    • pp.187-192
    • /
    • 2009
  • In this paper, we proposed an algorithm for personal identification of dorsal surface pattern of hand vein pattern using graph theory. Using dense ranee data images of the hand vein pattern, we used matching algorithm within the frame work of graph theory for the determination of the desired correspondence. Through preprocessing, the captured images are more sharp, clear and thinning. After thinning, the images are normalized and make graph with node and edge set. This normalized graph can make adjacent matrix. Each adjacent matrix from individual vein pattern are different. From examining the performance of individual vein patterns, we can approach performances well kind biometric technique.

  • PDF

Inverse Eigenvalue Problems with Partial Eigen Data for Acyclic Matrices whose Graph is a Broom

  • Sharma, Debashish;Sen, Mausumi
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.2
    • /
    • pp.211-222
    • /
    • 2017
  • In this paper, we consider three inverse eigenvalue problems for a special type of acyclic matrices. The acyclic matrices considered in this paper are described by a graph called a broom on n + m vertices, which is obtained by joining m pendant edges to one of the terminal vertices of a path on n vertices. The problems require the reconstruction of such a matrix from given partial eigen data. The eigen data for the first problem consists of the largest eigenvalue of each of the leading principal submatrices of the required matrix, while for the second problem it consists of an eigenvalue of each of its trailing principal submatrices. The third problem has an eigenvalue and a corresponding eigenvector of the required matrix as the eigen data. The method of solution involves the use of recurrence relations among the leading/trailing principal minors of ${\lambda}I-A$, where A is the required matrix. We derive the necessary and sufficient conditions for the solutions of these problems. The constructive nature of the proofs also provides the algorithms for computing the required entries of the matrix. We also provide some numerical examples to show the applicability of our results.

Microwave Network Study by Bond Graph Approach. Application to Tow-Port Network Filter

  • Jmal, Sabri;Taghouti, Hichem;Mami, Abdelkader
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.121-128
    • /
    • 2022
  • There are much processing techniques of microwave circuits, whose dimensions are small compared to the wavelength, but the disadvantage is that they cannot be directly applied to circuits working at high and/or low frequencies. In this article, we will consider the bond graph approach as a tool for analyzing and understanding the behavior of microwave circuits, and to show how basic circuit and network concepts can be extended to handle many microwaves analysis and design problems of practical interest. This behavior revealed in the scattering matrix filter, and which will be operated from its reduced bond graph model. So, we propose in this paper, a new application of bond graph approach jointly with the scattering bond graph for a high frequency study.

DOMINATING ENERGY AND DOMINATING LAPLACIAN ENERGY OF HESITANCY FUZZY GRAPH

  • K. SREENIVASULU;M. JAHIR PASHA;N. VASAVI;RAJAGOPAL REDDY N;S. SHARIEF BASHA
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.4
    • /
    • pp.725-737
    • /
    • 2024
  • This article introduces the concepts of Energy and Laplacian Energy (LE) of Domination in Hesitancy fuzzy graph (DHFG). Also, the adjacency matrix of a DHFG is defined and proposed the definition of the energy of domination in hesitancy fuzzy graph, and Laplacian energy of domination in hesitancy fuzzy graph is given.

AN UPPER BOUND ON THE CHEEGER CONSTANT OF A DISTANCE-REGULAR GRAPH

  • Kim, Gil Chun;Lee, Yoonjin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.507-519
    • /
    • 2017
  • We present an upper bound on the Cheeger constant of a distance-regular graph. Recently, the authors found an upper bound on the Cheeger constant of distance-regular graph under a certain restriction in their previous work. Our new bound in the current paper is much better than the previous bound, and it is a general bound with no restriction. We point out that our bound is explicitly computable by using the valencies and the intersection matrix of a distance-regular graph. As a major tool, we use the discrete Green's function, which is defined as the inverse of ${\beta}$-Laplacian for some positive real number ${\beta}$. We present some examples of distance-regular graphs, where we compute our upper bound on their Cheeger constants.

Matrix-Based Intelligent Inference Algorithm Based On the Extended AND-OR Graph

  • Lee, Kun-Chang;Cho, Hyung-Rae
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.10a
    • /
    • pp.121-130
    • /
    • 1999
  • The objective of this paper is to apply Extended AND-OR Graph (EAOG)-related techniques to extract knowledge from a specific problem-domain and perform analysis in complicated decision making area. Expert systems use expertise about a specific domain as their primary source of solving problems belonging to that domain. However, such expertise is complicated as well as uncertain, because most knowledge is expressed in causal relationships between concepts or variables. Therefore, if expert systems can be used effectively to provide more intelligent support for decision making in complicated specific problems, it should be equipped with real-time inference mechanism. We develop two kinds of EAOG-driven inference mechanisms(1) EAOG-based forward chaining and (2) EAOG-based backward chaining. and The EAOG method processes the following three characteristics. 1. Real-time inference : The EAOG inference mechanism is suitable for the real-time inference because its computational mechanism is based on matrix computation. 2. Matrix operation : All the subjective knowledge is delineated in a matrix form, so that inference process can proceed based on the matrix operation which is computationally efficient. 3. Bi-directional inference : Traditional inference method of expert systems is based on either forward chaining or backward chaining which is mutually exclusive in terms of logical process and computational efficiency. However, the proposed EAOG inference mechanism is generically bi-directional without loss of both speed and efficiency.

  • PDF

THE GROUP OF GRAPH AUTOMORPHISMS OVER A MATRIX RING

  • Park, Sang-Won;Han, Jun-Cheol
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.301-309
    • /
    • 2011
  • Let R = $Mat_2(F)$ be the ring of all 2 by 2 matrices over a finite field F, X the set of all nonzero, nonunits of R and G the group of all units of R. After investigating some properties of orbits under the left (and right) regular action on X by G, we show that the graph automorphisms group of $\Gamma(R)$ (the zero-divisor graph of R) is isomorphic to the symmetric group $S_{|F|+1}$ of degree |F|+1.

A Study on the Reliability Evaluation of Communication Networks by Matrix Transformation (행열변현에 의한 통신망의 신뢰도 계정에 관한 연구)

  • 김영근;오영환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.13 no.5
    • /
    • pp.379-389
    • /
    • 1988
  • In this paper, an algorithm for obtaining 2-state switching failure function and a terminal pair reliability evaluation method in a communication network are proposed. The communication network is modeled by a graph. By using the sequence of matrix transformations for the graph, minimal cut-set matrix representing all minimal cut-sets which completely interrupt the communication path is determined and 2-state switching failure function is then obtained from the minimal cut-set matrix. The terminal pari reliability of the communication network is evaluated by corresponding the random variables to 2-state switching failure function. Illustrative examples are provided to demonstrate the algorithm. A computer program evaluating the terminal pair reliability in a complex and large network has also been developed.

  • PDF

An Integer Matrix-Driven Inference Mechanism for Negotiation Decision Support in B2B Electronic Commerce (기업간 전자상거래에 있어서 협상의사결정지원을 위한 정수행렬 연산 추론 메커니즘에 관한 연구)

  • Lee, Kun-Chang;Cho, Hyung-Rae;Kwon, Soon-Jae
    • Asia pacific journal of information systems
    • /
    • v.11 no.1
    • /
    • pp.1-24
    • /
    • 2001
  • This paper is aimed at proposing a new inference mechanism for B-to-B electronic commerce decision-makings, named IMITAO(Integer Matrix-driven Inference based on Transformed And-Or graph) which is based on integer matrix operation to speed up the inference. During the B-to-B electronic commerce, many kinds of negotiations are needed for mutually satisfactory decision-makings. During such negotiations, several factors including subjective and objective constraints should be considered so as to reach satisfactory decisions. In this respect, we suggest first a Transformed AND-OR Graph(TAOG) which each firm's conditions or judgement are incorporated into, and then we propose a high-speedy inference mechanism named IMITAO which basically depends on TAOG. Firms engaged in B-to-B negotiations on the Internet can get an appropriate decision support from using IMITAO for their negotiation simulations. The proposed IMITAO inference mechanism is characterized by its fast inference because its main inference procedures are based on integer matrix operation. A real-world example for B-to-B negotiations was used to prove the validity of our proposed TAOG and IMITAO approach. Experimental results showed that our approach was very useful in performing the B-to-B electronic commerce decision-makings considering a wide variety of either subjective or objective constraints.

  • PDF

Group Average-consensus and Group Formation-consensus for First-order Multi-agent Systems (일차 다개체 시스템의 그룹 평균 상태일치와 그룹 대형 상태일치)

  • Kim, Jae Man;Park, Jin Bae;Choi, Yoon Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.12
    • /
    • pp.1225-1230
    • /
    • 2014
  • This paper investigates the group average-consensus and group formation-consensus problems for first-order multi-agent systems. The control protocol for group consensus is designed by considering the positive adjacency elements. Since each intra-group Laplacian matrix cannot be satisfied with the in-degree balance because of the positive adjacency elements between groups, we decompose the Laplacian matrix into an intra-group Laplacian matrix and an inter-group Laplacian matrix. Moreover, average matrices are used in the control protocol to analyze the stability of multi-agent systems with a fixed and undirected communication topology. Using the graph theory and the Lyapunov functional, stability analysis is performed for group average-consensus and group formation-consensus, respectively. Finally, some simulation results are presented to validate the effectiveness of the proposed control protocol for group consensus.