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Abstract. This article introduces the concepts of Energy and Laplacian

Energy (LE) of Domination in Hesitancy fuzzy graph (DHFG). Also, the

adjacency matrix of a DHFG is defined and proposed the definition of the
energy of domination in hesitancy fuzzy graph, and Laplacian energy of

domination in hesitancy fuzzy graph is given.
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1. Introduction

In 1965, L.A. Zadeh [1] established the foundation of fuzzy sets (FSs) and
fuzzy relations (FRs). It has been used in the evaluation of cluster patterns.
Rosen feld [2] established the structure of fuzzy graphs (FGs) by considering
FRs on FSs. Somasundaram A and Somasundaram S [7] studied the concept
of domination in FGs. The Laplacian matrix and energy of a fuzzy graph are
defined by Sadegh Rahimi Sharbaf and Fatmeh Fayazi [8]. Some conclusions on
Laplacian energy limits of the fuzzy graphs are given. A fuzzy graph’s energy
and certain limitations on its energy are examined in [4 and 5]. Ore and Berge
[19,20] developed the notion of dominant sets in graphs. In IFG, R. Parvathi
and G. Thamizhendhi [9,10] established the dominating set, dominating num-
ber, independent set, and total dominating number. The study of domination
concepts in IFG is more efficient than FGs, which is beneficial for traffic density
and communications systems. Kartheek E and Sharief Basha.S [11] expanded
the notion of the minimum dominant energy (MDE) to FGs. They also provide
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the two boundaries of the MDE of FGs. R. Parvathi and M.G. Karunambigai
[3] were introducing a new concept of intuitionistic fuzzy graphs (IFGs) and also
provide properties of IFGs with suitable illustrations. Kalimulla A, Vijayaraga-
van R, and Sharief Basha.S proposed the concept of Dominating Energy (DE)
in various operations such as union, join, Cartesian product, composition, and
complement, between two IFGs. Two IFGs were investigated in respect to their
dominant energy. The DE of several operations of an IFG is also examined.
Laplacian Energy of IFGs was established by Sharief Basha.S and Kartheek E
[14]. The Signless Laplacian energy of IFGS was established by Obbu Ramesh
and S.Sharief Basha [6]. And the two boundaries are also given with suitable ex-
amples. R. Vijayaragavan, A. Kalimulla, and S. Sharief Basha [12] discussed the
importance of dominating Laplacian energy (DLE) of IFG in Cartesian product
and Tensor product. The idea of DLE in various products of IFGs is expanded.
They explored the DLE in products of IFGs and also the DLE in the products
of two IFGs is described.

The Hesitant fuzzy sets (HFSs) concept is expanded from the concepts of FSs
and IFSs. V Torra [15] was first introduced the HFSs concept and also given ba-
sic some basic properties of HFSs. HFSs have been expanded by Xu Z. and Zhu
B [16, 17] from various perspectives, including quantitative and qualitative. The
notion of dominance in Hesitancy fuzzy graphs is extremely rich, both theoreti-
cally developments and practically. Hesitancy fuzzy graphs (HFG) are developed
to capture the common complication that happens during the decision of an en-
tity’s grade of membership from a set of alternative values, which causes one to
hesitate. HFG are used to select a time-Minimised emergency route (TiMER)
for the transportation of accident sufferers. Pathinathan T, Jon Arockiaraj J
and Jesintha Rosline J [18] were introduced the new idea of FGs called the HFGs
from the IFGs and “Intuitionistic Double Layered FGs” and also, a number of
related outcomes have been examined and solved. Shakthivel R, Vikramaprasad
R, and Vinothkumar N were investigating the dominating notion in HFGs and
certain properties of domination in Hesitancy Fuzzy Graph (DHFG), as well as
DHFGs products such as “union, join, cartesian product, and composition”. The
energy of hesitancy fuzzy graphs are extended from the concepts of intuitionistic
fuzzy graphs by Rajagopal Reddy and Sharief Basha [21]. They are introduced
the properties of energy of HFGs with suitable example.

According to the following, this document is arranged. In section 2, defines
the fundamental definitions of domination in HFG. In section 3, focuses some
related definitions of Energy of HFG and Dominating Energy of HFG and also
find the numerical values of Energy of DHFG. In section 4, proposes the related
definitions of Laplacian Energy of HFG and Dominating Laplacian Energy of
HFG and also find the numerical values of Laplacian Energy of DHFG. Finally,
the paper’s conclusion is presented in Section 5.
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2. Preliminaries

Definition 2.1. A HFG is of the form HG = (V,E, µ, γ, β), where

• V = {v1, v2, ..., vp} such that µ1 : V → [0, 1], γ1 : V → [0, 1] and
β1 : V → [0, 1] are denotes the degree of membership, nonmembership
and hesitant of the elements vi ∈ V and µ1(vi) + γ1(vi) + β1(vi) = 1,
where

β1(vi) = 1− [µ1(vi) + γ1(vi)] . (1)

• E ⊆ V × V where µ2 : V × V → [0, 1], γ2 : V × V → [0, 1] and β2 :
V × V → [0, 1] are such that,

µ2(vi, vj) ≤ min[µ1(vi), µ1(vj)] (2)

γ2(vi, vj) ≤ max[γ1(vi), γ1(vj)] (3)

β2(vi, vj) ≤ min[β1(vi), β1(vj)]and (4)

0 ≤ µ2(vi, vj) + µ2(vi, vj) + µ2(vi, vj) ≤ 1, ∀(vi, vj) ∈ E. (5)

Definition 2.2. Consider HG = (V,E, µ, γ, β) defines a HFG, then the arc
(vi, vj) of HFG is called a strong arc if

µ2(vi, vj) ≤ µ1(vi) ∧ µ1(vj), (6)

γ2(vi, vj) ≤ γ1(vi) ∧ γ1(vj), and (7)

β2(vi, vj) ≤ β1(vi) ∧ β1(vj), (8)

Definition 2.3. Assume that HG = (V,E, µ, γ, β) is a HFG, u, v ∈ V and u
dominates v in HG if a strong arc exists between them. A subset D ⊆ V is
called as a dominating set in an HFG HG, if there exists u in D such that u
dominates for every v ∈ V −D.

3. The Energy of HFG and Dominating Energy of HFG

Definition 3.1. Suppose HG = (V,E, µ, γ, β) is an HFG, and also consider the
DHFG is HG = (V,E, µ, γ, β, µ1, γ1, β1), then the dominating hesitancy fuzzy
adjacency matrix (DHFAM) D(A(HG)) = [dij ] where

pij =

 (µij , γij , βij) if (vi, vj) ∈ E
(1, 1, 1) if i = j and vi ∈ D
0 otherwise

Now the DHFAM D(HG) can be written as

D(HG) = (µD(HG), γD(HG), βD(HG))

Where

µD(HG) =

 µij if (vi, vj) ∈ E
1 if i = j and vi ∈ D
0 otherwise
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γD(HG) =

 γij if (vi, vj) ∈ E
1 if i = j and vi ∈ D
0 otherwise

βD(HG) =

 βij if (vi, vj) ∈ E
1 if i = j and vi ∈ D
0 otherwise

Definition 3.2. Consider HG = (V,E, µ, γ, β) be an HFG, then Eigen roots
of DHFAM D(HG) is defined as (Z, Y,X) where κ is the set of Eigen roots
of µD(HG), α is the set of Eigen roots of γD(HG) and λ is the set of Eigen
roots of βD(HG). The energy of a dominating hesitancy fuzzy graph (DHFG)
HG = (V,E, µ, γ, β, µ1, γ1, β1) is defined as(∑

κi∈Z

|κi|,
∑
αi∈Y

|αi|,
∑
λi∈X

|λi|

)

Where
∑

κi∈Z

|κi| is the summation of the absolute values of the Eigen roots

of µD(HG) and E(µD(HG)) is defined as the energy of a membership ma-
trix,

∑
αi∈Y

|αi| is the summation of the absolute values of the Eigen roots of

γD(HG) and E(γD(HG)) is defined as the energy of a nonmembership ma-
trix and

∑
λi∈Y

|λi| is the summation of the absolute values of the Eigen roots of

βD(HG) and the energy of a hesitant matrix is defined as E(βD(HG)).

Example 1.
From figure 1, we obtain

A(HG) =


(0, 0, 0) (0.4, 0.3, 0.2) (0.3, 0.4, 0.2) (0.2, 0.5, 0.3)

(0.4, 0.3, 0.2) (0, 0, 0) (0.4, 0.4, 0.1) (0.2, 0.5, 0.2)
(0.3, 0.4, 0.2) (0.4, 0.4, 0.1) (0, 0, 0) (0.2, 0.5, 0.1)
(0.2, 0.5, 0.3) (0.2, 0.5, 0.2) (0.2, 0.5, 0.1) (0, 0, 0)


First we find the Energy of A(HG) of HFG and then the Dominating Energy of
D(A(HG)) of HFG
(i) We find the Energy of A(HG) of HFG.
The Energy of A(HG) of HFG HG = (V,E, µ, γ, β) is

E(HG) =

n∑
i=1

|κi| (9)

Where κi is the eigenroots of A(HG) of HFG
Now we define the matrix A(HG) into three matrices Aµ(HG), Aγ(HG) and
Aβ(HG) are
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Figure 1. Hesitancy Fuzzy Graph with four Vertices

Aµ(HG) =


0 0.4 0.3 0.2
0.4 0 0.4 0.2
0.3 0.4 0 0.2
0.2 0.2 0.2 0

 , Aγ(HG) =


0 0.3 0.4 0.5
0.3 0 0.4 0.5
0.4 0.4 0 0.5
0.5 0.5 0.5 0



Aβ(HG) =


0 0.2 0.2 0.3
0.2 0 0.1 0.2
0.2 0.1 0 0.1
0.3 0.2 0.1 0


Calculating the Eigenroots of the above three matrices and subtituiting in equa-
tion 9 we get
E(Aµ(HG)) = 1.7451, E(Aγ(HG)) = 2.6160, and E(Aβ(HG)) = 1.1345
Therefore, the Energy of A(HG) of HFG is (1.7451, 2.6160, 1.1345)

i.e., E(HG) = (1.7451, 2.6160, 1.1345)

(ii) We find the Dominating Energy of D(A(HG)) of HFG
Assume HG = (V,E, µ, γ, β) be an HFG, then the vertex set V = {v1, v2, v3, v4},
and E = {(v1v2), (v1v3), (v1v4), (v2v1), (v2v3), (v2v4), (v3v1), (v3v2), (v3v4), (v4v1),
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(v4v2), (v4v3)} be the edge set.
Assume a DHFG HG = (V,E, µ, γ, β, µ1, γ1, β1) then V = {v1, v2, v3, v4}, and
(µ1, γ1, β1) are given by µ1 : V → [0, 1], γ1 : V → [0, 1] and β1 : V → [0, 1]
Where

µ1(v1) = maxvk(µ(v1, vk))

γ1(v1) = maxvk(γ(v1, vk))

β1(v1) = maxvk(β(v1, vk))

Now,

µ1(v1) = maxvk(µ(v1, vk)), ∀ k = 1, 2, 3, 4

= max(µ(v1, v2), µ(v1, v3), µ(v1, v4))

= max(0.4, 0.3, 0.2)

µ1(v1) = 0.4

We calculate the remaining values µ1(v2), µ1(v3), and µ1(v4) as same as above

µ1(v2) = max(0.4, 0.4, 0.2) = 0.4

µ1(v3) = max(0.3, 0.4, 0.2) = 0.4

µ1(v4) = max(0.2, 0.2, 0.2) = 0.2

γ1(v1) = minvk(γ(v1, vk)), ∀ k = 1, 2, 3, 4

= min(γ(v1, v2), γ(v1, v3), γ(v1, v4))

= min(0.3, 0.4, 0.5)

γ1(v1) = 0.3

We calculate the remaining values γ1(v2), γ1(v3), and γ1(v4) as same as above

γ1(v2) = min(0.3, 0.4, 0.5) = 0.3

γ1(v3) = min(0.4, 0.4, 0.5) = 0.4

γ1(v4) = min(0.5, 0.5, 0.5) = 0.5

β1(v1) = maxvk(β(v1, vk)), ∀ k = 1, 2, 3, 4

= max(β(v1, v2), β(v1, v3), β(v1, v4))

= max(0.2, 0.2, 0.3)

β1(v1) = 0.3

We calculate the remaining values β1(v2), β1(v3), and β1(v4) as same as above

β1(v2) = max(0.2, 0.1, 0.2) = 0.2

β1(v3) = max(0.2, 0.1, 0.1) = 0.2

β1(v4) = max(0.3, 0.2, 0.1) = 0.3
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According to definition 2.2, v1 dominates v3 and v4, and v2 dominates v3 and v4,
because

µ2(v1, v3) ≤ µ1(v1) ∧ µ1(v3)

γ2(v1, v3) ≤ γ1(v1) ∧ γ1(v3)

β2(v1, v3) ≤ β1(v1) ∧ β1(v3)

µ2(v1, v4) ≤ µ1(v1) ∧ µ1(v4)

γ2(v1, v4) ≤ γ1(v1) ∧ γ1(v4)

β2(v1, v4) ≤ β1(v1) ∧ β1(v4)

and

µ2(v2, v3) ≤ µ1(v2) ∧ µ1(v3)

γ2(v2, v3) ≤ γ1(v2) ∧ γ1(v3)

β2(v2, v3) ≤ β1(v2) ∧ β1(v3)

µ2(v2, v4) ≤ µ1(v2) ∧ µ1(v4)

γ2(v2, v4) ≤ γ1(v2) ∧ γ1(v4)

β2(v2, v4) ≤ β1(v2) ∧ β1(v4)

Therefore, the DHFG HG = (V,E, µ, γ, β, µ1, γ1, β1) is D = {v1, v3} then V −
D = {v3, v4} where V = {v1, v2, v3, v4} .
Now |D| = 2 = total of the diagonal elements.
According to definition 2.3, we define the DHFAM D(HG) of HFG is

D(HG) =


(1, 1, 1) (0.4, 0.3, 0.2) (0.3, 0.4, 0.2) (0.2, 0.5, 0.3)

(0.4, 0.3, 0.2) (1, 1, 1) (0.4, 0.4, 0.1) (0.2, 0.5, 0.2)
(0.3, 0.4, 0.2) (0.4, 0.4, 0.1) (0, 0, 0) (0.2, 0.5, 0.1)
(0.2, 0.5, 0.3) (0.2, 0.5, 0.2) (0.2, 0.5, 0.1) (0, 0, 0)


Here, we write the three matrices are membership matrix µD(HG), nonmem-
bership γD(HG) and hesitant βD(HG)

µD(HG) =


1 0.4 0.3 0.2
0.4 1 0.4 0.2
0.3 0.4 0 0.2
0.2 0.2 0.2 0

 , γD(HG) =


1 0.3 0.4 0.5
0.3 1 0.4 0.5
0.4 0.4 0 0.5
0.5 0.5 0.5 0



βD(HG) =


1 0.2 0.2 0.3
0.2 1 0.1 0.2
0.2 0.1 0 0.1
0.3 0.2 0.1 0


The Eigen roots of each adjacency matrix µD(HG), γD(HG) and βD(HG) are
calculated as follows
The Eigen roots of µD(HG) = {−0.2288,−0.0018, 0.6055, 1.6251}
The Eigen roots of γD(HG) = {−0.5099,−0.0779, 0.7000, 1.8878}
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The Eigen roots of βD(HG) = {−0.1183,−0.0289, 0.8090, 1.3381}
By the definition of Energy of DHFAM is

E (A(D(HG))) =
∑
κi∈Z

|κi|

we determine the Energy of µD(HG) is

E (µD(HG)) =

4∑
i=1

|κi|

= |κ1|+ |κ2|+ |κ3|+ |κ4|

By substituting needed values in above equation and calculating weget the energy
of DHFAM
E (µD(HG)) = 2.4612.
The energy of DHFAMs γD(HG) and βD(HG) are calculated as the same as
above
γD(HG) = 3.1756 and βD(HG) = 2.2943.
∴ The Energy of DHFGHG = (V,E, µ, γ, β, µ1, γ1, β1) is (2.4612, 3.1756, 2.2943)( ∑

κi∈Z

|κi|,
∑

αi∈Z

|αi|,
∑

λi∈Z

|λi|

)
= (2.4612, 3.1756, 2.2943).

4. The Laplacian Energy of HFG and the Dominating Laplacian
Energy of HFG

In this section, First we find the Laplacian Energy of A(HG) of HFG and then
the Dominating Laplacian Energy of D(A(HG)) of HFG HG = (V,E, µ, γ, β, µ1,
γ1, β1).

Definition 4.1. Consider A(HG) be an adjacency matrix of HFG and the
degree of the matrix of an HFGHG = (V,E, µ, γ, β) is defined asD(HG) = [dij ],
then the Hesitancy fuzzy Laplacian matrix (HFLM) of HFG is defined as

L(HG) = D(HG)−A(HG)

.

Definition 4.2. Suppose D(A(HG)) be a dominating hesitancy fuzzy adja-
cency matrix of DHFG and D(HG) = [dij ] be a degree matrix of HG =
(V,E, µ, γ, β, µ1, γ1, β1). The matrix L(D(HG)) = D(HG) −D(A(HG)) is de-
fined as the dominating hesitancy fuzzy Laplacian matrix (DHFLM) of DHFG.

Definition 4.3. Assume HG = (V,E, µ, γ, β) be an HFG with |V | = r nodes
then the Laplacian Energy (LE) of an HFG is denoted as

LE(βij(HG)) =

r∑
i=1

∣∣∣∣∣∣∣λi −
2

∑
1≤i≤j≤r

β(vi, vj)

r

∣∣∣∣∣∣∣ (10)
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Where λi be the Eigen root of adjacency matrices of HFG.
Therefore, [LE (µij(HG)) , LE(γij(HG)), LE(βij(HG))] be the LE of an HFG
HG = (V,E, µ, γ, β)

Definition 4.4. ConsiderHG = (V,E, µ, γ, β, µ1, γ1, β1) be a DHFG with |V | =
r nodes and [LE(D(µij(HG))), LE(D(γij(HG))), LE(D(βij(HG)))] be the LE
of an DHFG and denoted as follows

LE(D(µij(HG))) =

r∑
i=1

∣∣∣∣∣∣∣κi −
2

∑
1≤i≤j≤r

µ(vi, vj)

r

∣∣∣∣∣∣∣
LE(D(γij(HG))) =

r∑
i=1

∣∣∣∣∣∣∣δi −
2

∑
1≤i≤j≤r

γ(vi, vj)

r

∣∣∣∣∣∣∣
LE(D(βij(HG))) =

r∑
i=1

∣∣∣∣∣∣∣λi −
2

∑
1≤i≤j≤r

β(vi, vj)

r

∣∣∣∣∣∣∣
Where κi, δi and λi are the Eigen roots of domination of hesitancy fuzzy adja-
cency matrices D(muij(HG)), D(γij(HG)) and D(βij(HG)) of DHFG.

(i)We find the Laplacian Energy of A(HG) of HFG Now we define the Laplacian
matrix of A(HG) is

L(A(HG)) =
(0.9, 1.2, 0.7) −(0.4, 0.3, 0.2) −(0.3, 0.4, 0.2) −(0.2, 0.5, 0.3)
−(0.4, 0.3, 0.2) (1.0, 1.2, 0.5) −(0.4, 0.4, 0.1) −(0.2, 0.5, 0.2)
−(0.3, 0.4, 0.2) −(0.4, 0.4, 0.1) (0.9, 1.3, 0.4) −(0.2, 0.5, 0.1)
−(0.2, 0.5, 0.3) −(0.2, 0.5, 0.2) −(0.2, 0.5, 0.1) (0.6, 1.5, 0.6)


The Laplacian matrix of A(HG)into three matrices L(Aµ(HG)), L(Aγ(HG))
and L(Aβ(HG)) are

L(Aµ(HG) =


0.9 −0.4 −0.3 −0.2
−0.4 1.0 −0.4 −0.2
−0.3 −0.4 0.9 −0.2
−0.2 −0.2 −0.2 0.6



L(Aγ(HG) =


1.2 −0.3 −0.4 −0.5
−0.3 1.2 −0.4 −0.5
−0.4 −0.4 1.3 −0.5
−0.5 −0.5 −0.5 1.5


and

L(Aβ(HG) =


0.7 −0.2 −0.2 −0.3
−0.2 0.5 −0.1 −0.2
−0.2 −0.1 0.4 −0.1
−0.3 −0.2 −0.1 0.6





734 Rajagopal Reddy et al.

Calculating the Eigenroots of L(Aµ(HG)), L(Aγ(HG)) and L(Aβ(HG)) and
then subtituiting in equation (10) we get
The Laplacian Energy of A(HG) is (1.8000, 2.6000, 1.1806)
Therefore, LE(A(HG)) = (1.8000, 2.6000, 1.1806)
(ii) We find the Dominating Laplacian Energy of an HFG
In this portion, we define the definition of Laplacian energy of DHFG and also
find the laplacin energy of DHFG using the DHFGHG = (V,E, µ, γ, β, µ1, γ1, β1).
The Laplacian matrix L(D(HG)) = D(HG) − D(A(HG)) is Using the matrix
4, we define the Laplacian Matrix of DHFG is

L(D(HG)) =
(1.9, 2.2, 1.7) −(0.4, 0.3, 0.2) −(0.3, 0.4, 0.2) −(0.2, 0.5, 0.3)
−(0.4, 0.3, 0.2) (2.0, 2.2, 1.5) −(0.4, 0.4, 0.1) −(0.2, 0.5, 0.2)
−(0.3, 0.4, 0.2) −(0.4, 0.4, 0.1) (0.9, 1.3, 0.4) −(0.2, 0.5, 0.1)
−(0.2, 0.5, 0.3) −(0.2, 0.5, 0.2) −(0.2, 0.5, 0.1) (0.6, 1.5, 0.6)


The Laplacian Energy of DHFG is

[LE(D(µij(HG))), LE(D(γij(HG))), LE(D(βij(HG)))]

The laplacian energy of D(µij(HG)) is

LE(D(µij(HG))) =

∣∣∣∣∣∣∣κi −
2

∑
1≤i≤j≤r

µ(vi, vj)

r

∣∣∣∣∣∣∣ (11)

The Laplacian Matrix of D(µij(HG)) is

L(D(HG)) =


1.9 −0.4 −0.3 −0.2
−0.4 2.0 −0.4 −0.2
−0.3 −0.4 0.9 −0.2
−0.2 −0.2 −0.2 0.6


The Eigen roots of the above Laplacian matrix are
κ1 = 0.2972, κ2 = 0.9141, κ3 = 1.8267, and κ4 = 2.3620
By substituiting these Eigen roots in equation (11) and calculating weget
LE(D(µij(HG))) = 2.9774
We find the LE of LE(D(γij(HG))) and LE(D(βij(HG))) is calculated as the
above, we get
LE(D(γij(HG))) = 2.8608 and LE(D(βij(HG))) = 1.8738.
∴ [LE(D(µij(HG))), LE(D(γij(HG))), LE(D(βij(HG)))] = (2.9774, 2.8608,
1.8738)
Hence, the LE of domination in HFG is

LE(D(HG)) = (2.9774, 2.8608, 1.8738)

In the table 1, the results of the Energy and Laplacian energy of an HFG and the
Dominating Energy and Dominating Laplacian Energy of an HFG are compared
as follows
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Table 1. The results of Energy and Laplacian Energy of
HFG and the results of DOminating Energy and Dominating

Laplacian Enenrgy of HFG .

E of A(HG) of HFG (1.7451, 2.6061, 1.1345)
D E of D(A(HG)) of HFG (2.4612, 3.1756, 2.2943)

LE of A(HG) of HFG (1.8000, 2.6000, 1.1806)
DLE of D(A(HG)) of HFG (2.3620, 2.9774, 1.8738)

We observe that the above table, the Energy of A(HG) of an HFG is less than
the Dominating Energy of D(A(HG)) of an HFG.
Therefore, E(HG) < E(D(HG))
Likewise, the Laplacian Energy of A(HG) of an HFG is less than the Dominating
Laplacian Energy of D(A(HG)) of an HFG.
Therefore, LE(HG) < LE(D(HG))

5. Conclusion

In this article, we have defined the adjacency matrix of dominating Hesitancy
fuzzy graph (DHFG) and the Energy of a DHFG. Also, introduced the concept
of the Laplacian Energy of a DHFG. The results of the Energy and Laplacian
energy of an HFG are compared with the results of the Dominating Energy and
Dominating Laplacian Energy of an HFG. Further explanations and examples
of the other valid theoretical ideas will be included in a future article on this
subject.
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